Solution of the twin paradox of Langevin using a Wick rotation.

Description of the problem in Euclidean 2D geometry defined by $L^{2}=V^{2} t^{2}+X^{2}$.
The twins separate at A. The one who remains on Earth follows the worldine AE (on the t axis) and the traveler the worldline ABDE . The journey includes a first step of constant acceleration of magnitude g starting from A , of proper time t_{1}, then an inertial phase of proper time t_{2} then a constant deceleration step of magnitude g of proper time t_{l} then an inertial phase where the rocket, landed at destination, at a distance d from the departure, will be staying for a proper time t_{3}, the return will be operated symmetrically. This is represented on a Cartesian diagram with coordinates t, x. In 2-dimensional Euclidean geometry, constant acceleration is represented by an arc of a circle and a constant velocity by a straight line, the slope of which is depending on the velocity, relative to initial inertial reference frame, resulting from the previous acceleration. During the first phase of constant acceleration g , the worldline is an arc of circle of length t_{l}, (traveler's time) in unit of time or $V . t_{l}$ in unit of space, of angle $\alpha=t_{l} . \mathrm{g}$, which in radians is $\alpha V^{-1}=t_{1} \cdot \mathrm{gV}^{-1}$ and R is the radius of the circle (in units of space) $\mathrm{R}=\mathrm{V}^{2} \cdot \mathrm{~g}^{-1}$. The angles AOB and CBD are equal to the angle a. From simple considerations on the figure, we deduce:
$: d=2 R\left(1-\cos \left(\frac{\alpha}{V}\right)\right)+V \cdot t_{2} \sin \left(\frac{\alpha}{V}\right)=\frac{2 \cdot V^{2}}{g}\left(1-\cos \left(\frac{t_{1} \cdot g}{V}\right)\right)+v \cdot t_{2} \sin \left(\frac{t_{1} \cdot g}{v}\right)$
From the Euclidean geometry, $L^{2}=V^{2} t^{2}+x^{2}$, for getting the Minkowski's one, $S^{2}=-c^{2} T^{2}+x^{2}$, we may, for instance, set $V^{2}=-c^{2}$, this implying $V=i . c .^{1}$,
Taking into account all these elements, one get:

$$
d=\frac{2 c^{2}}{g}\left(\cosh \left(\frac{t_{1} \cdot g}{c}\right)-1\right)+c \cdot t_{2} \cdot \sinh \left(\frac{t_{1} \cdot g}{c}\right)
$$

Same type of calculation for the getting the difference of time on the 2 worldlines.
$\Delta t=4\left(t_{1}-\frac{R}{V} \sin \frac{\alpha}{V}\right)+2 t_{2}\left(1-\cos \frac{\alpha}{v}\right) \rightarrow 4\left(t_{1}-\frac{c}{g} \sinh \frac{t_{1} \cdot g}{c}\right)+2 t_{2}\left(1-\cosh \frac{t_{1} \cdot g}{c}\right)$
The result is negative as the straight line is longer than the curve, in Minkowski's metric.

[^0]Note: $\cos (i . x)=\cosh (x),(1 / i) \sin (i . x)=\sinh (x)$. It is straightforward to check these relations by using the polynomial definition of these functions.

[^0]: ${ }^{1}$ Usually, we set $\boldsymbol{T}=\boldsymbol{i} . \boldsymbol{t}$ (Wick rotation). In this case, setting $\boldsymbol{V}=\boldsymbol{i} . \boldsymbol{c}$, which gives the same result is more convenient. Trigonometric functions become hyperbolic functions for imaginary arguments This document is adapted from: http://spoirier.lautre.net/physique.pdf.

