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Summary The precession, resulting from the 4D spacetime curvature, of spacetime geodesics in Schwarzschild’s
spacetime, is well-known topic.1. The geodesic curve in this spacetime is fully defined by a r(ϕ) function on
a curve defined in 2D space. In this article, after a review of spacetime geodesics and of their space sections,
we will derive the precession of a geodesic in the space section of the Schwarzschild’s spacetime. Even though
a space section of a spacetime has no physical character, it might enlightens the understanding of the geom-
etry of the Schwarzschild’s spacetime. This precession in this space section, which, unlike the precession in
spacetime, will only depends on the ratio M/l, is defined by an original infinite polynomial of even powers of
M/l, this providing a real precession, even for imaginary values of l2 . At the end, we will review, the possible
relation between this precession of geodesics in a space section and that of spacetime geodesics, in the case
of weak field, within some assumptions, as well as its relation with the deflection of light by massive bodies
(null geodesics). In the conclusion, we will discuss how this solution may enlighten the understanding of the
precession phenomenology.

1 Spacetime and space geodesics in Schwarzschild’s metric

For defining the precession of the perihelion of a geodesic in Schwarzschild’s 4D spacetime, a function r(ϕ),
depending on parameters M (mass of the central body) and on the parameters of the geodesics :L = r2dϕ/dτ
(angular momentum) and E = (1−2GM/r)dt/dτ (energy), is only needed. The geodesic is a curve in spacetime
(see figure 1 in annex 1), where per the spherical symmetry, the space section of the geodesic is a curve included
in a 2D plane (θ = constant, usually one set θ = π/2 )3. In the three dimensional space section of Schwarzschild’s
spacetime where dσ2 is the metric line element, we can also to define the precession of a geodesic in this space
section by a r(ϕ) function, with an angular momentum defined by l = r2dϕ/dσ. 4

Original Schwarzschild’s metric is recalled in equation (1) below.

ds2 = −(1− 2GM

r
)dt2 +

dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdϕ2) = −(1− 2GM

r
)dt2 + dσ2 (1)

Where,

dσ2 = +
dr2

1− 2GM
r

+ r2(dθ2 + sin2 θdϕ2) =
dr2

1− 2GM
r

+ r2dϕ2, for θ =
π

2
(2)

In the last part of the equation , we set θ = π/2, which is allowed, per the spherical symmetry, without loss
of generality.

∗jacques.fric@etu.univ-paris-diderot.fr. Paris-Diderot University, Laboratory SPHERE.
1For analytic solution solving the spacetime equation, see for instance [?], chapter 19.
2M is the mass of the central body and l is a generic notation for the angular momentum in spacetime or in space
3This curve which is the projection of the spacetime geodesic on this plane is not a geodesic in space, of affine parameter σ used

in the line element dσ2 of the space metric, see annex 1.
4In 4D spacetime, the affine (dynamic) parameter on a timelike geodesic is the proper time, a timelike parameter. In space the

affine parameter on the spacelike geodesic, is a spacelike parameter therefore the dimension of L = r2dϕ/dτ will be a square length
divided by a time while that of l = r2dϕ/dσ will be a length.
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2 Analytic method for the precession of planets in Schwarzschild’s
spacetime

2.1 Interest of geodesics in a space section of spacetime

General relativity is a geometrical theory of the gravitation in spacetime. Physical geodesics are timelike or null
geodesics. 5 Unlike geodesics in spacetime which do not depend on the coordinates, geodesics in a space section
of spacetime 6 depend on the coordinates. So, what would be the interest of such geodesics? We may select
a space section in spacetime, but we know that this depends on the selected coordinates, and that this space
section (at constant time in the coordinates attached at this frame), is arbitrary 7. This interest is motivated
by an original proposal of Painlevé [?] describing the Schwarzschild’s spacetime geodesic as the geodesic of the
Schwarzchild space section multiplied by a conformal factor. This shows that the conformal structure of the
space section and that of the spacetime are the same. This is a quite surprising property. See annex 1 for some
details.

But, even though a space section is arbitrary, the space section in the coordinates used in the Schwarzschild
frame as described in equation (1) may be interesting as on the one hand the time is ”‘orthogonal”’ to the
space section 8 and on the other hand the form of the metric is ”‘static”’. 9 Therefore, as one defines usually
the spacetime geodesic by using the Schwarzschild coordinates, geodesics in its space section would provide
a complementary information for describing the geometrical space structure of a space section which is more
complex than it appears at a first look, see [?], figure 1.

2.2 The geodesic equation in space

We will use the well-known method for getting a general solution for the geodesic equation in space and then,
we will use it for solving the problem of the precession of geodesics in space. Dividing second part of equation
(2) by dσ2 yields:

1 =
dr2

dσ2(1− 2GM
r )

+ r2
dϕ2

dσ2
⇒ dr2

dσ2
= (1− 2GM

r
)(1− r2 dϕ

2

dσ2
) (3)

dr2

dσ2
= (1− 2GM

r
)(1− l2

r2
) (4)

Equation (4), valid only on a geodesic, is equation (3) with l = r2dϕ/dσ which is the conserved angular
momentum, on the spatial geodesic.10

By multiplying equation (4) by (dσ/dϕ)2 = r4/l2, we get:

dr2

dϕ2
= (1− 2GM

r
)(
r4

l2
− r2)⇒ dϕ =

±dr√
−r2(1− 2GM

r )(1− r2

l2 )
(5)

Let us set:

u =
1

r
⇒ r =

1

u
⇒ dr = −du

u2
(6)

By inserting it, in equation (5), we get :

du2

u4dϕ2
= (1− 2GMu)(

1

u4
)(

1

l2
− u2)⇒ dϕ =

±du√
(1− 2GMu)( 1

l2 − u2)
(7)

By defining an angle θ, a parameter A2 and a constant K, such as:

θ = arcsin

√
1 + lu

2
⇒ sin2 θ =

1 + lu

2
, A2 =

4GM

2GM + l
,K =

√
l

l + 2GM
(8)

5One can also define spacelike geodesics in spacetime but there are not considered to be physical.
6Geodesics in a space section of the Schwarzschild ’s spacetime is a special case, where the coordinate t is constant, of spacelike

geodesics, where the affine parameter of the geodesic is spacelike in this spacetime but, where the coordinate time t is generally
not constant. In this paper, we limit our main analysis to geodesics in the space section of spacetime.

7We will select a space section in the Schwarzschild’s coordinates, but a space section in the Painlevé’s coordinates, describing
the same spacetime would return an Euclidean space section whose geodesics are straight lines!

8This means that the four basis vectors, associated to the coordinates are orthogonal according to the definition of orthogonality
in relativity.

9This means that the space section does not depend on time and is orthogonal to space.
10This ”‘constant of motion”’ l exists as the metric dσ2 does not depend on ϕ.
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Equation (7) can be written:11

dϕ

2
= K

dθ√
1−A2 sin2 θ

⇒ ϕ(ψ,A2)

2
= K

∫ θ=ψ

θ=0

dθ√
1−A2 sin2 θ

= KEllipticF (ψ,A2) (9)

Inserting the values of θ, K and A2 defined in equation (8) yields:

ϕ

2
=

√
l

l + 2GM
EllipticF [arcsin(

√
1

2
(1 + lu)),

4GM

l + 2GM
] (10)

EllipticF (ψ,A2) or F (ψ,A2) in a short notation is the integral described in equation (9). This integral,
called elliptic integral of the first kind, includes an argument A2 called the parameter, A is called the modulus.12

The parameter ψ = θ(u), called the amplitude, is, as shown in equation (9), the upper limit of integration of
the angle θ defined in equation (8).

Returning to r = 1/u, we get:

ϕ

2
=

√
l

l + 2GM
EllipticF [arcsin(

√
1

2
(1 +

l

r
)),

4GM

l + 2GM
] (11)

2.3 The non trivial structure of the space section

In equation (10), in the EllipticF integral, the constraint on the parameter θ = arcsin
√
x implies 0 ≤ x ≤ 1→

−1/l ≤ u ≤ 1/l and the constraint A2 ≤ 1, implies that 2GM ≤ l
We know that the Schwarzschild’s solution is not the maximally extended solution for this spacetime as it

describes only two spacetime regions, denoted I and II, of the four spacetime regions, denoted I, II, III, IV,
described, for instance, by the Kruskal’s solution (see [?] figure 5.42 p. 226, for instance) . The negative value
of u and r, as r = 1/u, should be associated to the space sections of regions III and IV of the Kruskal solution.

This shows that, even though the Schwarzchild’s solution does not describes all the spacetime regions, its
space section solution describes all space sections of the spacetime. This is possible as there is no singularity
for r = 0 in the space metric and because the singularity at r = 2GM is not physical. As, per the definition of
the EllipticF integral, A2 ≤ 1 → l ≥ 2GM , this implies, in addition, that in this problem, only space sections
of regions I and IV (outside of this horizon) are involved.

2.4 Elliptic-K

K(A2) = EllipticK(A2) = EllipticF (
π

2
, A2) =

∫ π
2

0

dθ√
1−A2 sin2 θ

(12)

EllipticK(A2), also called K(A2) in a short notation, is a special case of EllipticF , where the upper limit
ψ is equal to π/2. It is the complete elliptic integral of the first kind of Legendre and therefore has only one
parameter (A2). There exists an analytic definition of the integral EllipticK(A2) by an infinite polynomial of
powers of A2. This is this polynomial definition, given by equation (19), that we will use further, for calculating
the precession.

With the values of K and A2, defined in equation (8), by using the definition of EllipticK(A2), the equation
(10) for ψ = π/2, can be written:

ϕ(ψ = π/2, A2)

2
=

√
l

l + 2GM

∫ π
2

0

dθ√
1−A2 sin2 θ

=

√
l

l + 2GM
EllipticK(

4GM

l + 2GM
) (13)

Equation(13) that we will use for computing the precession, defines ϕ/2 and not ϕ therefore, we will have
to multiply it by two for getting the result. Equation (13) shows that the solution in space only depends on the
parameters M and l.

11By using the definition of θ,A2 and K in equation (8), annex 1 shows that it is straightforward to verify that du2/[(1 −
2GMu)(−u2 + 1/l2)] = (2Kdθ)2/(1−A2 sin2 θ) whose integral is an elliptic integral of first kind.The binary operator ±, in the last
term of equation (7), is related to the orientation of the geodesic as there are two possible orientations. For the integration, we can
select one direction, without loss of generality, that we will associate to the sign +.

12There are several formal notations, this being quite confusing. For instance, it is denoted EllipticF (ψ,A) in WolframMathWorld
but, in both notations, it is A2 which is used in the computation of the integral. It is just two notations for the same object. This
remark will also apply to the EllipticK integral and Jacobi-Amp function, that we will use further.
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2.5 Jacobi-Amp-function

The EllipticF integral defined in equation (10) ϕ/2K = F (ψ,A2) has an inverse function called Jacobi-
Amplitude function noted am(ϕ/2K,A2), such that ψ = am(ϕ/2K,A2). So per the definition of sin(ψ),
where ψ is the upper limit of θ, and K in equation (8) we get 13:

sin2 ψ =
1 + lu

2
= sn2(

ϕ

2K
,A2)⇒ u =

1

l
(−1 + 2sn2(

ϕ

2K
,A2)) (14)

This gives the function u(ϕ). The function r(ϕ) can be deduced by using the relation r = 1/u. An example
given in annex 2 shows the curvature of the spce section, exhibited by the precession of the space geodesics, of
the Schwarzschild’s spacetime.

2.6 These elliptic integrals define the precession

EllipicF , EllipticK and their inverse integrals exhibit two angles ψ and ϕ. Equation (13) shows that when θ
varies from 0 to ψ = π/2, ϕ/2K varies from 0 to EllipticK(A2). So for a half-pseudo-orbit where θ varies from
0 to π 14:

∆(
ϕ

2
) = 2KEllipticK(A2)− π (15)

And equation (16) below will be the equation to be used for solving the problem for n full orbits.

∆ϕ = 4n(2KEllipticK(A2)− π) (16)

2.7 Class of equivalence

The equation (16) only depends on parameters K and A2. This equation will provide an exact solution to the
problem, if we know these parameters on the spacelike geodesic. By posing 2GM/c2l = k2, parameters K and
A2, defined in equation (8), can be written:

K = (1 +
2GM

c2l
)−1/2 = (1 + k2)−1/2, A2 = (

2GM

c2l
)(

2

1 + 2GM
c2l

) = (2k2/(1 + k2)) (17)

Therefore, equation (16) will only depend on the dimensionless parameter k2. We will expect a solution as
a function of k2.

This parameter k2 defines a class of spatial solutions.

3 Solution for the precession in space

3.1 General solution

By inserting the definition of A2 and K, given in equation (17), in equation (13), giving the formal general
solution, for ψ = π/2, we get:

ϕ

2
=

√
1

1 + k2
EllipticK(

2k2

k2 + 1
) (18)

The integral ElliptickK(k) can be represented by an infinite polynomial: 15

EllipticK(
2k2

k2 + 1
) =

π

2

n=∞∑
n=0

[
(2n!)

22n(n!)2
]2(

2k2

k2 + 1
)n ≡ π

2

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(

2k2

k2 + 1
)n (19)

where n!! denotes the semi-factorial. By using equation(19), equation (18) becomes:

ϕ

2
=

√
1

1 + k2
(
π

2
)

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(

2k2

1 + k2
)n =

π

2

n=∞∑
n=0

[
(2n− 1)!!

(2n)!!
]2(2k2)n(1 + k2)−

1
2 (2n+1) (20)

13In Jacobi elliptic functions, sn(ϕ/2K,A2) = sin(am(ϕ/2K,A2)), see WolframMathWorld, Jacobi elliptic functions.
14A half-orbit defines the dynamic as we assume the symmetry of the orbit for the precession.
15http : //mathworld.wolfram.com/CompleteEllipticIntegraloftheF irstKind.html, equation (2). In terms of the Gauss hy-

pergeometric function, EllipticK = (π/2)2F1(1/2, 1/2, 1, 2k2/(1 + k2)). Let us recall that the Gauss hypergeometric function

2F1(a, b, c; z) is a solution of the second order homogeneous differential equation z(1−z)d2y/dz2 +[c− (a+ b+1)z]dy/dz−aby = 0.
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We replaced −(n+1/2) by −(1/2)(2n+1) which will be more convenient. Let us recall that (1+k2)−
1
2 (2n+1)

can also be developed in an infinite polynomial, as defined below:

(1 + k2)α = 1 +

j=∞∑
j=1

(α)(α− 1)..(α− j + 1)

j!
(k2)j (21)

For −1 < k2 < 1 and where α is a real number, with α = −(1/2)(2n+ 1) in our problem.
By using these formulas, equation (20) becomes: 16

ϕ

2
=
π

2

n=∞∑
n=0

(
(2n− 1)!!

(2n)!!
)2(2k2)n(1 +

j=∞∑
j=1

(2n+ 1)(2n+ 3)..(2n+ 1 + 2(j − 1))

(−2j)j!
(k2)j) (22)

The product of these two infinite polynomials is an infinite polynomial. For defining this polynomial we
have to calculate each coefficient Bn of (k2)n which, in the infinite polynomial defined in equation (22), will be
the sum of the product of coefficients of the terms(k2)i of the first polynomial with the coefficients of the terms
(k2)n−i of the second polynomial.

The result of this operation will define an infinite polynomial P (k2)

P (k2) =
π

2

n=∞∑
n=0

Bn(k2)n (23)

Where in Bn, as the first factor of the sum is related to (k2)i, the second factor should be related to (k2)n−i,
therefore in equation (22), we must set n = i, j = (n− i). This yields: (2i+1)(2i+3)..(2i+1+(2(n− i−1))) =
(2i+ 1)(2i+ 3)..(2n− 1)) = (2n− 1)!!/(2i− 1)!!. Therefore Bn can be written:

Bn(k2)n =

i=n∑
i=0

(
(2i− 1)!!

2i!!
)2(2i(k2)i)(

(2n− 1)!!

(2i− 1)!!(n− i)!(−2n−i)
)(k2)n−i (24)

By simplifying by (2i − 1)!! and using (2i − 1)!! = 2i!/(i!2i), (2i)!! = i!2i, 2i!/i!2 = 2i!/(i!(2i − i)!) =
(
2i
i

)
,

n!/i!(n− i)! =
(
n
i

)
, this equation yields:

Bn =
2n!

n!2
(2−2n)

i=n∑
i=0

(−1)n−i

2i

(
n

i

)(
2i

i

)
=

2n!

n!2
(−1n)(2−2n)

i=n∑
i=0

(−1

2
)i
(
n

i

)(
2i

i

)
(25)

3.2 The polynomial includes only even powers of (k2)

We will demonstrate that equation (25) giving Bn is a hypergeometric series. Such series is defined by using
the Gauss hypergeometric function 2F1(a; b; c, d). 17

Let us set:

A(n) =
2n!

n!2
(−1n)(2−2n) (26)

Per the formal definition of the Gauss hypergeometric function:

2F1(a; b; c, d) =

i=n∑
i=0

(a)i(b)i
(c)i

(d)i

i!
(27)

Where the notation (a)i = a(a+ 1)..(a+ i−1) is the Pochhammer symbol. If we set a = −n, b = 1/2, c = 1,
d = 2, we get:

(a)i = (−n)(−n+ 1)..(−n+ i− 1) = (−1)i(n)(n− 1)..(n− i+ 1) = (−1)in!/(n− i)!, (b)i = (1/2)(3/2)...(2i−
1)/2 = (1/2)i(2i− 1)!! = (1/2)i2i!/(2ii!), (c)i = (1)(2)...(i) = i!, di = 2i

Inserting these values in equation (27) yields:

2F1(−n; 1/2; 1, 2) =

i=n∑
i=0

(
(−1)i(n!)

(n− i)!
)((

1

2
)i

2i!

2ii!
)(

1

i!
)(

2i

i!
) =

i=n∑
i=0

(−1

2
)i
(
n

i

)(
2i

i

)
) =

Bn
A(n)

(28)

16In the second sum, we will separate the factor 1/2 and the sign − from the formula and will gather them in the factor 1/(−2j)
for simplifying the calculation.

17See mathworld.wolfram-hypergeometricFunction, equation (8) for the form of the series generated by such function, and the
Pochhammer notation symbol (a)n.
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In the second sum of the equation above we used the relations: n!/((n− i)!i!) =
(
n
i

)
and 2i!/(i!i!) =

(
2i
i

)
.

This is the result that we expected!
For demonstrating that all terms B2m+1(k2)2m+1 vanish, we need to use equation (16) of mathworld.wolfram-

HypergeometricFunction, which gives an integral defining the hypergeometric function.

2F1(a; b; c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ub−1(1− u)c−b−1(1− uz)−adu. (29)

By calculating this integral with our parameters (a = −n, b = 1/2, c = 1, z = 2), we get:

∫ 1

0

u−1/2(1− u)−1/2(1− 2u)ndu =

∫ 0.5

0

u−1/2(1− u)−1/2(1− 2u)ndu+

∫ 1

0.5

u−1/2(1− u)−1/2(1− 2u)ndu (30)

Let us define two values of u, (0 ≤ u ≤ 1), u1 and u2 such that u1 = 1/2 + a and u2 = 1/2 − a, where

a ≤ (1/2). We get u
−1/2
1 (1− u1)−1/2 = [(1/2 + a)(1/2− a)]−1/2 = u

−1/2
2 (1− u2)−1/2 = [(1/2− a)(1/2 + a)]−1/2

(symmetry around 1/2).
In (1−2u), for u = u1 we get −2a and for u = u2, we get 2a. This, raised to power n, will give (u1)n = (−2a)n

and (u2)n = (2a)n which are equal when n is even and are opposite when n is odd.
Therefore, as exhibited by equation(30), where the integral is split in two parts (from 0 to 1/2 and from

1/2 to 1), when n is odd (n = 2m + 1), the two parts are opposite, the integral vanishes and when n is even
(n = 2m) the two parts are equal, this integral does not vanish.

Therefore:

P (k2) =

n=∞∑
n=0

B2n(k2)2n (31)

includes only even powers of k2.

ϕ

2
= K.EllipticK(A2) = P (k2) = −π

2

n=∞∑
n=0

B2n(k4)n = −π
2

n=∞∑
n=0

B2n(
(2GM)2

(cL)2
)n (32)

The form of this polynomial, describing the precession, shows that, even for an imaginary value of the angular
momentum, a real number for ϕ and therefore for the precession is expected! This is important because, per the
form of the metric described in equations (1) and (2), if we assume that the angular momentum, on the timelike
geodesic in spacetime, is real, that on the spacelike geodesic in space will be imaginary. Per this property, both
precession in spacetime and space will be real.

A numerical value of this polynomial up to n = 5 is provided in equation (33).

3.3 Numerical value of the polynomial

The polynomial P (k2) is given below up to n = 10. 18

P (k2) =
π

2
(1 +

3

16
(k4) +

105

1024
(k8) +

1155

16384
(k12) +

225225

4194304
(k16) +

2909907

67108864
(k20)) (33)

4 Conclusion

In this paper, we focused our analysis on the space geodesic which does not look to be the most important in
the theory of general relativity which is a spacetime theory. But as the most important information that we
get in physics about some physical or geometrical objects does not reside in the objects themselves but in their
relations, this complementary analysis which provides a set additional relations between objects may induce a
better understanding of the underlying physics described by the theory.

18The coefficients Bn are computed by using mathematica line of command : Bn =
FullSimplify[((2n)!/(n!)2)(2−2n((−1)n)Sum[((−1/2)j)Binomial[n, j]Binomial[2j, j], (j, 0, n)]], for n = 2, 4, 6, 8, 10.
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A Annex 1: Form of the geodesic equation

We have to check that:

dϕ2

4
=

K2dθ2

1−A2 sin2 θ
for sin θ =

√
1 + lu

2
, A2 =

4GM

2GM + l
,K =

√
l

l + 2GM
(34)

is equivalent to:

l2du2

(1− 2GMu)(1− u2l2)
(35)

By taking the derivative of sin(θ), defined in eq. (36), we get:

dθ2 cos2 θ =
l2du2

8(1 + lu)
⇒ dθ2(1− sin2 θ) =

l2du2

8(1 + lu)
(36)

dθ2

2
(1− lu) =

l2du2

8(1 + lu)
⇒ dθ2 =

l2du2

4(1− l2u2)
(37)

Therefore

dϕ2 =
4K2dθ2

1−A2 sin2 θ
=

4l

l + 2GM

l2(2GM + l)du2

4(1− l2u2)(2GM + l − 2GM(1 + lu))
(38)

By simplifying, this equation we get:

dϕ2 =
l2du2

(1− 2GMu)(1− u2l2)
=

du2

(1− 2GMu)( 1
l2 − u2)

⇒ dϕ =
du√

(1− 2GMu)( 1
l2 − u2)

(39)

which is the equation (7), as expected.

B Annex 1: The formal tri-dimensional space

C Annex 1: The formal tri-dimensional space

C.1 Domain of definition of the Elliptic integrals in this space

The angular parameter θ(r) = arcsin(
√

(1/2)(1 + lu)) = arcsin(
√

(1/2)(1 + l/r)), as u = 1/r, with its
limit of integration, ψ = θ(u), the amplitude of the Elliptic integral, emerged in equations (14, 15).

The EllipticF integral involves θ(u) where for −1/l ≤ u ≤ 1/l, we have : 0 ≤ θ(u) ≤ π/2. This was needed
for using the EllipticK integral.
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This is described on figure 1b. Figure 1a describes θ(r). Both are drawn for l = 16. 19.

C.2 Domain of definition of the Elliptic integrals in this space

The angular parameter θ(r) = arcsin(
√

(1/2)(1 + lu)) = arcsin(
√

(1/2)(1 + l/r)), as u = 1/r, with its limit of
integration, ψ = θ(u), the amplitude of the Elliptic integral, emerged in equations (14, 15).

The EllipticF integral involves θ(u) where for −1/l ≤ u ≤ 1/l, we have : 0 ≤ θ(u) ≤ π/2. This was needed
for using the EllipticK integral 20.

C.3 Symmetries and topology of the formal tri-dimensional space

In chapter 4, in the demonstration, some intermediate results, got from formal calculation in a formal non
physical 3D space 21, may include some negative values of the product l.u or l/r where r is a coordinate (as
well as u = 1/r). This suggest that u and r may have both positive and negative values in the equation. In
[?], in figure 1, the topology of the 3-dimensional maximally extended Schwarzschild’s metric is represented
as two asymptotically flat space sections connected by a Rosen-Einstein bridge, therefore positive values of r
may be associated to one of these space section (the usual physical space) and negative value to the other (its
symmetrical counterpart in the maximally extended solution).

We made no assumption on the parameter l, but when comparing l (angular momentum in space) with
L, its counterpart in spacetime, we will use the relation l = iL. The imaginary number i arise because per
their definition, l = r2dϕ/dσ and L = r2dϕ/dτ , the dynamic parameter is timelike in spacetime and spacelike
in space. But this is conventional, we might as well define l real and L imaginary. Anyway, we demonstrate
that, even with imaginary (positive or negative) parameters, the equation (29) will return a real number for the
precession.

The formal solution given by equation (14) yields ϕ/2.22 If we assume a simplex topology for the group of
rotation of parameter ψ supposed to be continuous parameter in this isotropic 3-dimensional extended space,
SU(2), where a rotation of 4π is needed for returning to initial position, must be the group to be used. In this
3-dimensional extended space this can be interpreted by its topology made of two folios. The angular parameter
ψ spans the extended space while ϕ spans only the positive folio. This would explain that the equation involves
ϕ/2.

Therefore, in space this why we use: ∆ϕ = ϕ(2π,A2)− (−4π)

C.4 Exhibition of the geodesic precession in space

The geodesic in space is a formal representation of the solution of the phenomenology of precession in a two
folios space, let us discover how r(ϕ), given by equations (21, 22), shows the precession of the image in space of
the geodesic, in spacetime.

All this figures, 23 represent the function r(ϕ) = L/(−1+2(Sin−Jacobi−Amp(ϕ/2K,A))2) for L/GM = 16,
(with c = 1), in polar coordinates. The point C (r = 0), center of the polar representation (the angle coordinate
is ϕ), is far outside of the figures. The distance CO corresponds to the minimum length (in absolute value) of
the radial coordinate r (in this example rmin = 16).

Figure 2a, for 0 ≤ ϕ ≤ π, displays two half branch (OA) and (OB) of two different, twisted, seudo-hyperbolas
On figure 2b, for 0 ≤ ϕ ≤ 2π, we see that a twisted and rotated half branch (OC) is added to (OA) and that a
twisted and rotated half branch (OD) is added to (OB).

On the figure 2c, for 0 ≤ ϕ ≤ 4π, another similar set (A’OC’) and (B’OD’) of two, twisted, branches of
different pseudo-hyperbolas, positively rotated, relatively to (AOC) and (BOD), appears.

This shows that the image in space of the precession phenomenology in spacetime also exhibits a precession
phenomenology. Obviously, at each addition of 2π to ϕ, ϕ+ 2π(n+ 1), a new twisted, rotated, set of branches
of pseudo hyperbola will appear (see figure 2d).

19Figure 1a,1b are drawn by using Maxima 14.12.1. If we use r = 1/u instead of u ,we get:( −l ≤ r for 0 ≤ θ(r) ≤ π/4 and r ≥ l
for π/4 ≤ θ(r) ≤ π/2), which is less convenient as it is not a continuous domain.

20If we use r = 1/u instead of u ,we get:( −l ≤ r for 0 ≤ θ(r) ≤ π/4 and r ≥ l for π/4 ≤ θ(r) ≤ π/2), which is less convenient as
it is not a continuous domain.

21The metric of this 3D space is not singular for r = 0
22Let us notice that this is also true in spacetime. In [?],pages 100-105, this is quite well explicated.
23Drawn with wxMaxima 14.12.1. For L/GM = 16, c = 1, 2K = 1.886, A2 = 0.222. See definition of K and A2 in equation (15).
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