
Summary

An examination of the contributions of Painlevé, reveals an incredible 
wealth of creativity that go far beyond the innovative form he proposed 
in 1921. But the ensuing debate, in the Academy of Sciences, as the 
analysis will show, even if it produced masterful contributions, will 
sink into oblivion without saving essentials.

Painlevé himself, despite a commendable attempt at clarification, under 
pressure from the scientific community, has too quickly abandoned.

We analyze how the fondamental concepts of space and time , as used 
in this innovative solution, have put into trouble even the most eminent 
contemporary scientists, including Einstein. Therefore, all of them 
rejected his proposal, wrongly.

We discuss the conditions for the emergence of such new theories and 
solutions breaking with current ontological concepts.



The context: Einstein

When Einstein, professor at Berlin, published his final equation of 
general relativity, at the end of November 1915, the World War I was 
raging. Nevertheless he will be comforted in his theory by: 

- Exact prediction of the advance of the perihelion of Mercury (1915). 

- Prediction of light deflection by the Sun confirmed (1919).

First exact solution in 1916 (Schwarzschild) for the single spherically 
symmetrical body (solar system). But these equations are singular on 
a surface at a certain distance from the center: Physical meaning?

This is a problem for Einstein and the few supporters (at that time) of 
his theory. Relativists try to conceal the "monstrosity" (sic Eddington) 
by considering it as a mathematical artifact.



The context: Painlevé 

At that time Painlevé, who will be minister of War (1917) and, later in 
the same year, head of the french government in 1917 (for 3 months 
only), is invested in the war effort.

After the end of the war, he will stimulate the debate that begins at the 
Academy of Sciences by issuing a critically but constructive proposal 
in 1921. 

Meanwhile, Einstein was awarded the Nobel Prize for "his 
contributions to physics, especially for quantum theory", but not for 
the general relativity, still controversial, even though the book of the 
famous mathematician H. Weyl, "Raum, Zeit, Materie", which 
devoted a large part at the Einstein's theory  contributes to increase the 
credibility in the general relativity.





The embrace of space and time in spacetime, 
revealed by the non-quadratic term dr.dt.

The Schwarzschild metric, where all terms are quadratic for time or 
space, is singular on the horizon.

The Painlevé form is the first one in history to be non singular on the 
horizon, but as it includes a non quadratic term that mixes space and 
time, this has baffled the scientific community !

What would be the physical meaning of a term that combines space and 
time which are physically different into a metric, and in addition 
implies an orientation of the metric.

This  solution, not singular on horizon reveals that it is not impassable, 
unlike the suggestion of Schwarzschild solution . One can pass through 
it, inwards but not outwards, so with no return possibility.



The spatio-temporal orientation is the key for 
understanding the physical structure of the solution.

Beyond this horizon, space and time exhibit strange properties. 
Physical time can  exist only when associated to movement.

The orientation of space implies an asymmetry in the structure of 
space-time.

It induces, in addition, two symmetrical regions, involving a 
dissociation of vacuum in two spacetimes of opposite orientations. 
Although Painlevé's statement did not report it, this was obvious!

This innovative proposal was not understood, especially the 
orientation of the solution, key concept necessary for crossing the 
horizon, (oriented phenomenology). It is that character with its 
implications which unifies the two sub-regions of the Schwarzschild 
form. 

But, possibly overwhelmed by the scope of his discovery, Painlevé, 
renounces (temporarily) to it, wrongly, 3 weeks later! 



An effect of orientation: The tilting of light cones of 
the local observer in Painlevé's form.



Dual representation of the previous one: The local 
observer sees a symmetrical space-time .

This illustrates the distrust of scientists towards an oriented spacetime. Hence the 
"principle of reversibility" Painlevé! The apparent contradiction between the two 
representations is the manifestation of the curvature of spacetime!

 

Now we look at the spacetime through the 
local  light cone (constant) of the observer.
We set 2GM/c² = 1.
The vectors ∂t and ∂r locally tangent to the  
coordinates lines t  and r of the Painlevé 
metric form are represented for four values 
of r.
For  r > 1, the vector ∂t   is inside the light 
cone. Static timelike worldlines are 
possible. 
For r  < 1   the vector ∂t (in red)  is outside 
the light cone. Static timelike worldlines 
are not possible, but for dr  negative, the 
resulting vector (OA) may be inside the 
light cone, involving a timelike worldline.



How the form of Painlevé shows that the horizon 
paradox in the form of Schwarzschild is fictional!

Four Painlevé's geodesics R = i (bold dashed arrows), 
one null geodesic, one light cone and four 
isochronous (in Painlevé's coordinate) lines, T = j, 
are represented. As all lines reach infinity for r=1, it 
is difficult to conclude anything in this diagram. 

One Painlevé's geodesic (blue), six isochronous 
lines (Schwarzschild's temporal coordinate).  
Painlevé's geodesic crosses all isochronous lines 
of Schwarzschild's temporal coordinate before 
crossing the horizon in a finite proper time.

Chart in Schwarzschild's coordinates, (t, r) Chart in Painlevé's coordinates, (T,r)



Redshift of incoming light: Painlevé vs Schwarzschild

Light is supposed to come from infinity with a frequency ω1. 
The chart gives the ratio ω2/ω1, where ω2 is the frequency measured either 
by a static observer or a by Painlevé's observer, at a finite distance r. 
Notice the opposite phenomenology.





Unusual  but enlightening properties, emerging from  
Painlevé's equation

To compare the two theories in this solution, Painlevé derives a covariant 
geometric formalism, as in general relativity, for the Newtonian mechanics, 
but only spatial, without any references to the Newtonian (absolute) time.

In classical mechanics, the length of a plane curve, defined by  r = f(φ)  in 
polar coordinates,  is computed by using the Euclidean metric. The equation 
of motion on this curve is given elsewhere.

We can also consider that this length is the affine parameter (λ) of this curve. 
In this case, the curve is defined by two functions: r(λ) and φ(λ).  As λ  is not 
used in the equation r = f (φ), without altering the relation, which defines the 
curve, we have the freedom to apply a gauge transformation on this affine 
parameter.

This allows, considering this affine parameter as the dynamic geodesic 
motion parameter, to unify the formalism. 

 



The geometric formalism of Newtonian mechanics to 
derive the laws of motion give rise to a physical 

(proper) time which marked the end of absolute time

 This is the meaning of the proposal of Painlevé who, in fact, defines an affine 
parameter, by using the gauge freedom for  taking into account the action of a 
field, a process in full compliance with Weyl's ideas about the gauge theory, at 
that time.

Moreover, the time, as dynamic parameter, will emerge naturally via the 
geodesic equation depending only on the spatial geometry, the curvature of 
which is determined solely by the gravitation. This confers it a natively 
physical status and seals its relationship with the space and  the physics.

One can check that this concept of time, derived from λ, affine parameter of the 
spatial geodesic is equivalent to the Newtonian absolute time t, by setting t = 
iλ. This yields a (-dt²+ dσ²) similar to the relativistic form.

Therefore, Newtonian's time can be ignored in these solutions. This allows to 
replace the hybrid formalism (2 equations) by an homogeneous formalism (1 
equation) and reveals the relational nature of the time.



The difference in nature of space and time are 
formally specified

The imaginary number i, introduced in these equations, characterizes the 
physical difference between time and space such as specified in the unified 
geometric formulation of general relativity.

But, unlike relativity where the “formally imaginary” time is a coordinate 
involved in a geometrical invariant (ds²) which in turn can be physically 
timelike, here we get directly a “formally imaginary” physical proper time 
defined by a physical constraint (energy conservation).

This results from the identity of the geodesics defined by the geometrical 
form of Painlevé and by the classical Newtonian formalism, this implies that 
the “imaginary” character of time is also existing in the Newtonian theory, 
even though it is not explicit, the equations for time and space being 
separated.

But, when we attempt to unify the formalism such as in the Painlevé proposal 
(eq. 2-4), where time and space are parts of a unified equation, the difference 
in nature is exhibited by the imaginary number i attached to the time.

–



Newtonian time and proper time identified as the same 
dynamic parameter

As the absolute Newtonian time t  is not a coordinate such as the spacelike 
coordinates of a geometric form, the Newtonian gravitation is not a 
spacetime theory requiring a timelike coordinate along with spacelike 
coordinates. 

The Newtonian time is conceptually a dynamic physical parameter. 

This will make ontologically possible its equivalence with the relativistic 
proper time, affine and dynamic parameter of a timelike worldline.

This is an epistemological convergence with the relativistic approach, where 
the proper time as measured by the observer, affine parameter of the 
worldline of this observer, is the dynamic parameter of this physical system.

In this formulation, the time will lose its a priori "metaphysical" character.



Emergence of a physical time : Summary

According to the spatial approach of Painlevé, we see that the absolute 
Newtonian time is absent. 

The affine parameter, dynamic parameter, is the proper time of an observer 
in geodesic motion. This geodesic is defined in a conformal Euclidean 
spatial geometry, the conformal factor (scalar potential in Newtonian 
gravitation) being determined by the gravitational field.

This geometry determines the geodesic, therefore its affine parameter. As the 
curvature of this geometry depends only on the gravitational field, we are 
entitled to say that the proper time that we consider, emerges from physics, 
namely, from the geodesic motion of a body submitted to gravity in our case. 

So, unlike Newtonian mechanics where space and time were a priori 
concepts and where the motion is a “byproduct”, here time emerges from 
motion, i.e. from the geodesic resulting from gravity!  



Painlevé explicits in a 2nd article (11/14/1921), how he 
derived the line element of the metric of his 1st article.

Starting from the generic form:

He continues:

Equation (4) is remarkable, it satisfies the Einstein equation (in vacuum) 
whatever the functions f(r)  and χ(r), thus defining a doubly infinite class of 
solutions. For f(r) = r  with χ(r) = 0,  one got Schwarzschild's form and with 
χ(r) = (2M/r)1/2/(1-2M/r), Painlevé's form.



Then, he renounces invoking constraints on the 
properties of space

Painlevé invokes a principle of reversibility of space for invalidating the 
solutions with non-quadratic terms. He surrenders, wrongly, to the criticism 
and misunderstanding of his contemporaries, raised by his proposal.

The trouble comes from using pseudo-Riemannian's geometry in general 
relativity. This  led the mathematicians, as evidenced by the work of H. Weyl 
on "problem of space" and those of E. Cartan, to formalize, at local 
infinitesimal scale, the concept of space in this new framework.

One problem was to reconcile the local infinitesimal homogeneous character of 
the space with its global character which was not. In 1921, this work was still 
in progress and we understand that the scientists lacked references to tackle 
these issues.

But later, during the visit of Einstein in Paris (April 7th 1922), he will defend 
fiercely his proposal, alone against all, but Einstein's disapproving statement 
will sign the death warrant for it, for a long time.



The meeting of April 5, 1922 in Paris

The debate on possible solutions of the Einstein equations for the Schwarzschild problem 
was highlighted during Einstein's visit at the « Collège de France » on April 7th  1922. 
Painlevé, helped by his colleague, J. Hadamard, opened the debate on the Schwarzschild 
singularity (horizon), called by the attendance « the Hadamard catastrophe ».  Einstein, 
rejected (wrongly) definitly the Painlevé proposal as a possible solution. It will take a long 
time, for repairing this mistake :Reported by Charles Nordmann, in « Einstein in Paris », 
http://www.21stcenturysciencetech.com/Articles_2011/Summer-2011/Einstein_Paris.pdf

Langevin & Einstein (April 1922)A polite but fierce debate : Sketch published in « L'illustration 04/22»  

Painlevé 
1923



1922   Einstein at the Collège de France invited by Langevin

At the « maison des  polytechniciens »





Painlevé generalizes his geometric Newtonian 
form to general relativity

This generalization is correct in the case of null geodesics (light). 
This induces that the space-time defined by general relativity and the 
generalized Painlevé geometric Newtonian form have the same 
conformal structure which, as we know, governs causality.

But, it fails to describe the timelike geodesics identical to those of 
general relativity, so does not describe the same spacetime.

The Newtonian and relativistic theories are different, 
epistemologically based on different assumptions which, except in 
some boundary weak field conditions, give different results.

This exhibits the trouble they had with theconcepts of space and 
time, such as defined by the general relativity.



The case of the single body with spatial spherical 
symmetry  exhibits  pseudo-Newtonian characters

The relativistic gravitation takes into account the self-interaction of a 
gravitational mass of a body with itself (its active mass with its passive 
mass), in contrast to Newtonian theory.

In the case of a single mass, given the spherical symmetry, this 
phenomenology can be obscured because the active mass in general 
relativity is supposed to be equal to the Newtonian gravitationnal mass 
at infinity.

In this solution, for radial free fall, without initial velocity at infinity, 
general relativity and Newtonian mechanics are equivalent.

Let's recall that mass is divided into three categories: inertial mass and 
the gravitational active and passive masses. The inertial mass and 
passive gravitational mass are equal according to the equivalence 
principle. The gravitational active mass contributes (with all the others) 
to the gravitational field and all the passive masses, including its own, 
couple with this global gravitationnal field.



Outstanding communication to the Academy of 
Sciences: Most of these masterful contributions will be 

forgotten!

From 1921 until 1924, a debate, polite but harsh, is raging at the 
Academy of Sciences between supporters and opponents of relativity, 
with on a side Le Roux, the most active defender of classical mechanics 
and on the other Brillouin, leader of defenders of Einstein's theory.

Alongside this fierce debate, let us notice 3 innovative contributions.

Sauger (1922) establishes the Schwarzschild solution directly from 
special relativity.

Cartan (1922) discovers the null principal directions of such a space-
time, foreshadowing the classification of Petrov (1954)-Pirani (1956).

Chazy (1922) derives, the Schwarzschild solution with cosmological 
constant. That will be rediscovered independantly by Lemaitre (1932).



Conceptual difficulties of general relativity

The integrated concept of space-time is in stark contrast to what we have 
in mind where space and time perceived as independent entities.

The concept of intrinsic curvature of four-dimensional spacetime  and 
even of three-dimensional space is difficult to represent.

The absence of an absolute background space, does not facilitate the 
understanding of orientation and space motion.

The hyperbolic spacetime is conceptually difficult to represent. Most 2D 
graphs we use for illustration are geometrically false.

The physical character of a geometric representation of the gravitation, 
hence relying on properties of space-time, is not well accepted by all.

Scientists thought wrongly that the symmetry of the Einstein's equation, 
would imply the “reversibility” invoked by Painlevé!



What about the difficulty to think “covariant” ?

To face this conceptual difficulties, one has tried to use methods 
separating space and time in the analysis (ADM, pseudo-tensor, ..).

The ADM approach was motivated by the emergence around 1960, of 
numerical methods for solving equations such as Einstein equations. It 
is, independently, also a method paving the way for a possible 
quantification of a theory of gravitation.

Meanwhile, some effective covariant approaches have also been 
developped: 

Classification of Petrov-Pirani, prefigured by E. Cartan.

Congruences can reconcile approaches deemed "incompatible", 
because they rely on  classes of four-dimensionnal geometric  objects. 
Therefore, as the physical world is four-dimensionnal, they can be 
tested.



The difficult emergence of new ideas

The example of Painlevé shows how a great solution, can result from 
a misinterpretation.

This highlights the phenomenon of the emergence of theories of 
rupture, which can not be directly derived from the  existing ones. It 
should not be surprising that the authors can be scientists "out of their 
field of excellence."

The history of relativity shows that the "discoverers" have not always 
been aware of what they had found and, in case, they did not often 
realize their importance and rarely have measured their scope.

From what seems to be a detail (generalization of Minkowski's 
geodesic), Einstein built, on this phenomenological argument, a 
monument. This shows the power of some heuristic arguments!



The controversy about Painlevé assertions on the ds²

We showed how Painlevé's assertions on ds² were misunderstood. One 
may wonder how such misunderstanding was possible as it was so 
simple to explain.

The context of "nervousness" of the proponents of the new theory still 
highly contested and plagued by internal problems (problem of 
"infinite potential on the horizon") was not favorable to a peaceful 
debate.

This led to a disaster for the scientific community.

What lessons can be learned to improve the sustainability of such 
work?

 



Conclusion: Painlevé an exemplary case showing 
the difficult emergence of new paradigms

It is surprising that it is Painlevé, who is a scientist educated in the 
classical Newtonian theory, who opens up an innovative debate on 
foundations and epistemological implications of the general relativity. 

One said that Painlevé was a mediocre relativist. Whether we refer to 
his understanding of the theory, clearly, this is true. But, 
notwithstanding with his poor skill in this theory, he set up an 
innovative  form of the metric who has baffled even the most brilliant 
minds, including Einstein, and whose merits are, at last, recognized 
today.

One may consider this as a happy coincidence, but one may also 
consider that his poor understanding of the general relativity prevented 
him to stick at already approved concepts and allowed his mind, free 
of these constraints, to be open at new ideas.
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