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Bell's Spaceship Paradox

1-Introduction

{This essay includes almost the full text of the two references listed above, I just slightly re-arranged
them in order to avoid too much redundancy.  I  added some comments in notes and I detailed some
calculations  in appendixes for the curious readers. I tried to make the diagrams2 as “exact” as possible for
illustrating the arguments developed. I add some chapters for complementary analysis  and remarks.  I
claim that the problem is part of a more general problem (extending worldlines up to make a round trip),
making the current  paradox related to an other well known paradox (twin paradox), both paradox relying
on the relativity of simultaneity in SR. 
Please note that in this essay sometimes we described a situation where there is a “string” connecting  the
two spaceships and we wonder whether it would break in such experiments. This may be confusing as SR
tells us about space and time dilatation or contraction but to know how a physical string would break
under stretch would depend of the material and geometrical parameters of this string. So, within this essay
the string is just a gadget aimed to make more physical the phenomenology described. A rigorous study
with a physical string is out of the scope of this essay}.   

2- Bell's thought experiment.

John Bell described this Special Relativity paradox in the essay,  "How to teach special relativity", in his
collection "Speakable and Unspeakable  in Quantum Mechanics." He did not originate the puzzle, but
we'll call it  Bell's Spaceship Paradox.

In Bell's version of the thought experiment, two spaceships, which are initially at rest in some common
inertial reference frame 3 are connected by a taut string. At time zero in the common inertial frame, both
spaceships  start  to  accelerate,  with  a  constant  proper  acceleration  g  as  measured  by  an  on-board
accelerometer.  Question:  does  the  string  break  -  i.e  does  the  distance  between  the  two  spaceships
increase?

Fig 1

The situation from the viewpoint of an observer at rest: Above the spaceships at takeoff, below at 60% of the speed
of light. Their distance L remains the same, the spaceships themselves and the string undergo a length contraction
to 80% of their length at rest. Therefore the string breaks.

In a minor variant, both spaceships stop accelerating after a certain period of time previously agreed
upon. The captain of each ship shuts off his engine after this time period has passed, as measured by an
onboard clock. This allows before and after comparisons in suitable inertial reference frames in the sense
of elementary special relativity.
According to discussions by Dewan & Beran and also Bell, in the spaceship launcher's reference system

2 Exact means “exact” according SR. I computed the equation of the curves represented and used Maxima GNU SW for 
graphics.

3 We will call it the “lab” frame.
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the  distance  between  the  ships  will  remain  constant  while  the  elastic  limit  of  the  string  is  length
contracted, so that at a certain point in time the string should break.

Objections  and  counter-objections  have  been  published  to  the  above  analysis.  For  example,  Paul
Nawrocki  suggests  that  the  string should not  break,   [3] while  Edmond Dewan defends his  original
analysis from these objections in a reply. [4] Bell reported that he encountered much skepticism from "a
distinguished experimentalist"  when he  presented  the  paradox.  To attempt  to  resolve  the  dispute,  an
informal and non-systematic canvas was made of the CERN theory division. According to Bell, a "clear
consensus" of the CERN theory division arrived at the answer that the string would not break. Bell goes
on to add "Of course, many people who get the wrong answer at first get the right answer on further
reflection". [1]. Later, Matsuda and Kinoshita [5 ] reported receiving much criticism after publishing an
article on their independently rediscovered version of the paradox in a Japanese journal. Matsuda and
Kinshita do not cite specific papers, however, stating only that these objections were written in Japanese.

{Let's introduce first a worldline will exhibiting all the features of the problem (in fact, according to the
symmetry  only half is necessary for understanding these features). 

Fig.2: The blue line is the half closed worldline of  accelerating rocket 1. On A , in the lab frame, the engine is fired
at  constant  thrust  moving away from the lab frame at  constant  accelerated speed as  measured  by a on board
accelerometer. Then engine is stopped in B starting an inertial flight still moving away from the lab frame but at
constant speed up to C where one starts to  fire again the same constant thrust but in the reverse direction making
the rocket to decelerate, still moving away up to  D where the relative velocity with the lab frame vanishes and
where engines are stopped again. The rocket will be in inertial flight again (D-E) remaining at constant distance of
the lab frame and the rocket processes  symmetrical operation to end up to a closed worldline (back at speed zero in
the lab frame. At the end of such round trip the traveler in rocket 1 enjoys “proper time contraction” (he is younger
than his  colleague remained around the  launching place  in  the  laboratory frame).  The red line  is  the  similar
worldline of rocket 2.

The set of parallel magenta skew lines are some line of simultaneity issued at the junction of  the different
regions corresponding to the different phenomenologies. They define transition sub-regions where the
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phenomenology smoothly evolves from one to the other. We will go in more details further in the text.
What occurs on segment  A-B, where both rocket are accelerating at constant rate4, will be analyzed in
chapter 3 (based mainly on the FAQ). We will add some comments. 
Segment  B-C, corresponding to inertial flight at constant relative velocity  v with the lab frame, will be
analyzed in chapter 4 (based mainly on the wikipedia article). We will add a study of the phenomenology
at the junction (A-B)-(B-C). 
Segment CD, where the rocket is decelerating is described using the same method in chapter (5).
Segment DE is relative to inertial flight in the same frame than the laboratory frame (but away from
observers remained at rest). 
The symmetrical part of the round trip worldline do not add any new phenomenology but is useful for
exhibiting the relation with the twin paradox.}

3- Analysis of the basic paradox 5

Bell asks us to consider two rocket ships, each  accelerating at the same constant rate, one chasing the
other.  The ships start out at rest in some coordinate system (the "lab frame").  Since they have the same
acceleration, their speeds should be equal at all times (relative to the lab frame) and so they should stay a
constant distance apart (in the lab frame).  But after a time they will acquire a large velocity, and so the
distance between them should suffer Lorentz contraction.  Which is it?

I think the best approach is through spacetime diagrams.  I'll lay out one explanation in detail, then sketch
two more.  The first two are pure SR, the last has the flavor of GR but not the substance.

Don't tackle the physical situation directly; instead, imagine some pictures.  Geometrical figures seem less
prone to the "simultaneity confusion" that bedevil SR paradoxes.  Once you have geometrical  situation in
hand, it's a piece of cake to translate it into physical terms.   [Not to keep you in suspense, I'll follow each
geometrical statement with the physical translation in brackets.] 
 
If you're not familiar with spacetime diagrams, the main thing to bear in mind is how the  x and  t axes
change on going from one frame to another frame in uniform motion with respect to the first.   (The first
frame is called the "lab frame"; the second is the frame of the "co-moving observer".)
 
The only real problem is drawing the x'-axis.  It should look just like the t'-axis (t' axis in a point P is lthe
tangent at P to the worldline of the rocket) , slanted so that the angle between the x-axis and x'-axis equals
the angle between the t-axis and t'-axis 6 . (This is assuming we choose units so c =1).

 The x-axis contains all events (spacetime points) which, according to the lab frame, occur at  t= 0, i.e,
according to the lab people,  these events occur  simultaneously.  The  x'-axis contains all  events which
happen  at  t'=  0,  and  so  are  simultaneous  according  to  the  moving  observers. This  easy  graphic
representation of the famous "failure of simultaneity" is one of the great strengths of Minkowski's idea.
 
First picture: we draw Cartesian coordinates in the plane, label the horizontal axis the t-axis, and the
vertical axis the x-axis.  [The (t,x)  system is the lab frame.] We also draw one branch of the hyperbola:
x2 -  t2 = 1,  say the right  hand branch  x =sqrt(1+t2).  Next  we draw a parallel  copy of  this  branch,
translated upwards some fixed distance  k, i.e. we draw x = k + sqrt(1+t2).  [These two curves are the
world-lines of our two rocket ships.] 

For each curve, dx/dt = 0 at t= 0.  [The ships are initially at rest.]  Also, exercise: d2x/dt2 =1 at  t = 0 7.
[Initial  acceleration = 1.] Obviously d2x/ dt2 is not constant.  However, pick a point  P on one of the
curves, and draw Minkowski coordinates (t',x') with origin at P and with t'-axis tangent to the curve. [The

4 Let's recall that all constant acceleration worldlines are represented by hyperbola on the Minkowski diagram..
5 Chapter 3,4,5 are are mainly a copy of the FAQ listed in the article (I just add some comments, appendixes and diagrams). 
6    In other words, x'-axis is symmetrical of t'-axis around light ray issued at P
7 See appendix 3 for details of computation.
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(t', x') system is the frame of the inertial instantaneously co-moving observer.]  

Fig. 3: Cartesian (t,x) Minkowski diagram with curves representing rocket 1 (green)  and rocket 2 (blue) 
worldlines,  rocket 1 co moving frame t'-axis (magenta) and x'-axis (brown) at P (t1,x1) located on rocket 1  
worldline.
A x' = cste (magenta) line at R(t1,x2), on rocket 2 (green) worldline is also represented. Be aware that the graphical 
length of curve AB on the diagram is not the proper time8: Diagram drawn using Maxima Software9.  Here k = 0.5. 

That is, if P has coordinates (t1, x1) in original system, then:

8 See appendix 1 for more details
9 See appendix 2 for more details
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     t' =γ(t-vx) + C_0         v = dx/dt at t = t1

     x' =γ(x-vt) + D_0         γ =1/sqrt(1-v2)

where C_0 and D_0 are chosen so that the P has coordinates (0,0)  in the primed system.  

Exercise  (or  have  a  look at  appendix  4):  d2x'/dt'2 = 1 at  P.  [The acceleration  of  each ship  is  1 as
measured by inertial instantaneously co-moving observers, at all times.] 

Note a few facts about this picture.  First, any vertical line  t = constant crosses the two curves a constant
x-distance apart; the constant is the number k from a few paragraphs back.  [According to the lab frame,
the  ships  stay  a  constant  distance  apart.]  If  we  pick  a  point  P on  the  low-hand  curve,  and  draw
Minkowski coordinates through P as above, then the x'-axis will cross the two curves at two points (P and
Q)  whose  x'-coordinates  differ by more than  k.  [The co-moving observer says  the ships have gotten
farther apart.]  If k is small compared to γ, then γk is a first-order approximation to this  x' difference.  [If
k is small enough, then the lab frame distance between the ships is approximately the co-moving distance
subjected to Lorentz contraction.]

[How did the ships get farther apart, if they maintained the same constant acceleration at all times?]  In
the (t',x') coordinate system, dx'/dt' =0 at t' = 0 for the low-hand curve, but dx'/dt' > 0 at t'= 0 for the  up-
hand curve 10.  [The co-moving observers say the pursuing ship is momentarily at rest, but the pursued
ship is moving,  thanks to that old relativistic  standby,failure of simultaneity.  So the pursued ship is
"pulling away".]

The x'-distance between the curves is actually slightly greater than γk.  You can see this by a geometrical
construction on fig.1.  Remember that P is point on the low-hand (green) curve , and the t'-axis (magenta
line) passes through P and is  tangent to that curve.  Draw a vertical line (a line t = t1) through P; let this
line cross the up-hand curve at R.  Draw a (magenta) line parallel to  the t'-axis through R (a line of the
form x'=constant).  Fact: the  (brown) x'-axis crosses the two slanted lines, x' = 0 and x' = constant, at  x'
coordinates 0 (P) and γk (S), respectively.  Since the up-hand curve is tangent to x'=constant at R, the x'-
axis will cross the up-hand curve at x' > γk. [rephrased as: According to the curvature of worldline, the
curve is above the x' = constant  line). Notice that the difference PQ - PS will be increasing with time! ]

{[In t',x' rocket 1 co-moving frame, as the rocket 1 (green) worldline  is tangent  to t'-axis at P, dx'/dt' = 0,
but at Q, (crossing point of rocket 2 worldline and x'-axis), as the rocket 2 (blue) worldline is not tangent
to any x'= constant line, dx'/dt'  ≠ 0, in fact dx'/dt' > 0 as we can read on fig.1. In its co-moving frame,
rocket 1 (at rest by definition of co-moving frame) sees rocket 2 ahead moving away 11, at the same time,
accordingly  to  SR   simultaneity  rules  (  the  x'-axis  is  the  line  of  simultaneity)  ]  [End  of  bracket
convention.]

Let's have a look on what happens from the point of view of rocket 2 observer.

10 See Appendix 5.
11 Faster and faster as time increases (difference would be larger in a P' point  at larger t value on rocket 1 worldline.
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In rocket  2   local  inertial  frame (t”,  x”)  at  Q (t”-axis  is  tangent  to  rocket  2  worldline  at  Q and  is
represented on the diagram by a brown line ,  x”-axis symmetrical of t”-axis around light ray worldline
(double arrowed red line) at Q is represented on the diagram by a black line issued at Q, it crosses rocket
1 worldline at R ≠ P). So the rocket 2 observer at Q sees rocket 1 observer at R.  Let's notice the obvious
break of simultaneity. 

When rocket 1 is at  P it measures spacelike distance to rocket 2 as  PQ. But when rocket 2 is in  Q, it
measures spacelike distance to rocket one as QR which is different.  We can see on the diagram that in
t”,x” frame (we draw a dotted magenta x”= cste line at R, parallel to t”-axis line at Q) that the velocity of
rocket 1  is negative (green curved worldline is going under the x” = cste dotted magenta line) , rocket 2
observer at rest in t”,x” frame sees rocket 1 behind her  receding, which is consistent with the previous
statement: they are going farther apart!).

t
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t”-axis
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Let's notice an interesting feature of the hyperbola defined by x = sqrt(1+t²): The x' axis (straight line of
simultaneity) at any point P of the curve is a straight line passing through the origin (x = 0, t = 0). It is a
geometrical property of hyperbola of the form x = sqrt(k²+t²) as we will demonstrate later.}

This first picture interprets "two ships with the equal constant accelerations" to mean "constant for the co-
moving observers, and equal in the lab frame".  Note that the lab frame says that the accelerations are not
constant, and the co-moving observers say the accelerations are not equal! (More precisely, any particular
co-moving observer says this.  The phrase "the co-moving observers" does not refer to a single frame of
reference, unlike the phrase "the lab frame".)  The lab frame says  the ships maintain a constant distance
from each other; the co-moving observers don't agree.

4- What happens after stopping engine simultaneously? 
In the following analysis  12 we will treat the spaceships as point masses and only consider the length of
the string. We will analyze the variant case,  where both spaceships shut off their engines after some time
period T. As we said before, in the "spaceship-launcher"'s reference system (what was called lab frame in
previous chapters, here labeled  S ) the distance L between the spaceships (A and B ) must remain constant
"by definition". 
{We'll draw the same kind of Minkowski diagram as in previous chapter. 
Notice that we already analyze in chapter 3 the part of the diagram involving the curved worldlines of
rockets (AA' -BB'). Here we'll be interested by the inertial part of the worldlines of rockets (straight lines
on the diagram). As the junction of curved and straight line (transition region) should be interesting to
study also, we do it at the end of this chapter.}

4-1 Inertial flight

Fig 4: The worldlines (navy blue curves) of two observers A and B who accelerate in the same direction with the
same constant magnitude acceleration. At A' and B', the observers stop accelerating. The dotted blue lines are "lines
of simultaneity" for observer  A at A'. Is the spacelike line segment  A'B” longer than the spacelike line segment
AB?
{Let's notice that the dotted red line is the line of simultaneity of observer B at B', but that the following
analysis would not be relevant as we can see on fig. 4 (this line crosses the worldline of observer A at a

12 Based on the Wikipedia article for 6-1

C
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point where this worldline is not globally inertial). This emphasizes the point we mentioned  on fig.1.
We have a  phenomenology intermediate  between constant  acceleration  and inertial  when observer  B
moves from B' up to B”evolving smoothly from the first one to the latter one. 
Here we will deal with the pure inertial phenomenology.}
This may be illustrated as follows. The displacement as function of time along the  X-axis of  S can be
written as a function of time f(t), for t > 0. The function f(t) depends on engine thrust over time and is the
same for both spaceships. Following this reasoning, the position coordinate of each spaceship as function
of time is:

 xA (t) = a0 + f(t) xB (t) = b0 + f(t) 

where

f(0) is assumed to be equal to 0,
xA(t) is the position (x coordinate) of spaceship A,

xB(t) is the position (x coordinate) of spaceship B, 

a0 is the position of spaceship A at time 0, 

b0 is the position of spaceship B at time 0. 

This implies that  xA (t)- xB (t)= a0 -b0   which is a constant, independent of time.

In other words,  the distance  L remains  the same.  This  argument  applies  to all  types  of synchronous
motion. Thus the details of the form of f(t) are not needed to carry out the analysis. Note that the form of
the function f(t) for constant proper acceleration is well known (see the article hyperbolic motion).

Referring to the space-time diagram (above right), we can see that both spaceships will stop accelerating
at events A' and B', which are simultaneous in the launching frame S .

We can also see from this space-time diagram that events A' and B' are not simultaneous in a frame co-
moving with the spaceships. This is an example of the relativity of simultaneity.

From our previous argument, we can say that the length of the line segment A'B' equals the length of the
line  segment  AB,  which  is  equal  to  the  initial  distance  L between  spaceships  before  they  started
accelerating 13. We can also say that the velocities of A and B in frame S, after the end of the acceleration
phase, are equal to v. Finally, we can say that the proper distance between spaceships A and B after the
end of the acceleration phase in a co-moving frame is equal to the Lorentz length of the line segment
A'B”. The line A'B” is defined to be a line of constant t', where t' is the time coordinate in the co-moving
frame,  a  time  coordinate  which  can  be  computed  from the  coordinates  in  frame  S via  the  Lorentz
transform:

t' = (t – vx/c²)/(1 – v²/c²)1/2

Transformed  into  a  frame  co-moving  with  the  spaceships,  the  line  A'B”  is  a  line  of  constant  t' by
definition, and represents a line between the two ships "at the same time" as simultaneity is defined in the
co-moving frame.

Mathematically, in terms of the coordinates in frames S and S', we can represent the above statements by
the following equations: tB' = tA' 

results into: xB - xA = xB' - xA' = L ,

xB” - xB' =  v(tB” - tB')   

13 In their rest frame.
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   t'B” = t'A'  implies:  tB” - v.xB” /c² =  tA' -v.xA' /c² 

In frame S', since both ends of the rope are marked simultaneously :

A'B' = x'B” - x'A'  

where:

x'B” = γ*(xB” - v*tB”) 

x'A' = γ*(xA' - v*tA') 

so:

x'B”  - x'A' = (xB” - xA' )/ γ

Calculate:

x'B”  - x'A' = (x'B”  - x'B' ) + (xB' - xA' ) = (x'B”  - x'A' )*(v/c)² +L  14

so:

x'B”  - x'A' = L* γ²

therefore:

A'B” = L* γ 

Thus when switching the description to the co-moving frame, the distance between the spaceships appears
to increase by the relativistic factor 15. Consequently, the string is stretched 16.

{Here  the  length  stretch  is  constant  (not  depending  on time,  as  in  chapter  3)  as  we are  on  inertial
worldlines.

Let's notice that we used Lorentz transform group for computing the stretch. Is it correct to do that?
These transforms are devoted to inertial frame in a Minkowski spacetime. In fact these infinite set of
inertial frames is the Minkowski space. This spacetime is static meaning eternal, these inertial frames
have been existed forever!  This is what allows the symmetry of Lorentz contraction.
But here this symmetry is broken. The inertial part of the rocket frames originate from a common one, the
laboratory frame. To stress this point let's consider the case where the set of infinite possible inertial
frame are issue from a common one. We claim, that this is equivalent to an absolute spacetime as all the
frame can be referred to the common one. So we see that we should be  very cautious in using Lorentz
transformation 
 
To comfort  the demonstration  above we perform a direct  computation  of  the  distance  in  co-moving
inertial frame using the basic “radar” method (exchange of light signals). This gives the same result.17. 

14 First term of right hand equation results in geometrical considerations on the diagram B”C/A'C = v/c and B”C/B'C = c/v.
15 A'B” is the distance between rockets measured in their rest frame (proper distance) after the end of acceleration in inertial

flight as well as L was the distance between the rocket in their rest frame (proper distance) before starting moving. So we
are founded to say, according to SR rules, that distance has increased. 

16 We may wonder whether in inertial flight (no stress) a physical string with elasticity, within the elastic limit, would not 
recover its initial length. So forget it, we are speaking about space dilatation!

17 See appendix 7.
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In fact, the above demonstration can be simplified as it is obvious that in inertial frames whether we
measure the distance between rockets in the lab frame we will get L. But the “physical” distance between
rockets should be measured in their co-moving frame where, according to Lorentz transform, we get a γ
factor yielding l = γ.L .
As the rockets started at “physical” distance L in the lab frame, this stretching is physical. 

And what about the length of AB segment in the rocket co_moving inertial frame? Obviously we find the
Lorentz contraction as demonstrated in Appendix 7. 
All  of this confirm that as we are in inertial  flight all  the plain Lorentz transforms would apply,  the
“physical” stretching of space results from the fact that we know that the distance between rockets in their
co-moving frame at take off was L }

Bell  pointed out that  length contraction of objects  as well  as the lack of length contraction between
objects in frame S can be explained physically, using Maxwell's laws. The distorted intermolecular fields
cause moving objects to contract or to become stressed if hindered from doing so. In contrast, no such
forces act in the space between rockets.
The Bell spaceship paradox is very rarely mentioned in textbooks, but appears occasionally in special
relativity notes on the internet.

An equivalent problem is more commonly mentioned in textbooks. This is the problem of  Born rigid
motion. Rather than ask about the separation of spaceships with the same acceleration, the problem of
Born rigid motion asks "what acceleration profile is required by the second spaceship so that the distance
between the spaceships remains constant in their proper frame". The accelerations of the two spaceships
must in general be different [6] [7] In order for the two spaceships, initially at rest in an inertial frame, to
maintain a constant proper distance, the lead spaceship must have a lower proper acceleration.[7]
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5- Decelerating rockets.

We analyzed the problem of accelerating rocket, but what about decelerating rockets? First notice that, in
our problem,  when starting from rest, we may consider that rockets always accelerate (never decelerate).
The direction of motion is an initial condition. But during acceleration we may stop the engine or we may
reverse the thrust after the same elapsed proper time of rocket. We will switch by 180° the direction of the
acceleration  vector.  We are tempted  to  say that  acceleration  means  acceleration  vector  has the same
direction than velocity vector and deceleration the opposite direction. 
According to the general case described in fig.1 we skip inertial flight B-C joining segments A-B to C-D
(segment D-E is null).  This is perfectly suitable for our demonstration.

Let's consider a general diagram (fig.5) including worldlines of accelerating rockets reversing thrust after
the same elapsed proper time and time in the lab frame (t = 1).  We selected the point P in order to avoid
the transient area between acceleration and deceleration, for dealing only with the deceleration problem.

Fig 5: Diagram representing rocket 1 and rocket 2 accelerating in the same way than described in chapter
3 up to t =1 and then decelerating at the same rate. In P (t = 1,5) on Rocket 1 worldline we draw t', x'
local frame axis. We represented the same interesting points P, Q, R than in fig.2.

From this diagram let's make the same analysis than in chapter 3. To make things easier to see,  let's make
a zoom on the interesting area containing P,Q,R (1.4 < t < 2).
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Fig.6: Zoom of the region t =1.4, t = 2 of the previous diagram. 

Note a few facts about this picture.  First, any vertical line  t = constant crosses the two curves a constant
x-distance apart; the constant is the number k from a few paragraphs back.  [According to the lab frame,
the ships stay a constant distance apart.]  

If we pick a point P on the low-hand curve, and draw Minkowski coordinates through P as above, then
the x'-axis will cross the two curves at two points (P and Q) whose x'-coordinates differ by less than k.
[The co-moving observer says the ships have gotten closer apart.]  If k is small compared to γ, then γk is a
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first-order approximation to this  x' difference.  [If k is small enough, then the lab frame distance between
the ships is approximately the co-moving distance subjected to Lorentz contraction.]

[How did the ships get closer apart, if they maintained the same constant acceleration at all times?]  In the
(t',x') coordinate system, dx'/dt' =0 at t' = 0 for the low-hand curve, but dx'/dt' < 0 at t'= 0 for the  up-
hand curve .  [The co-moving observers say the pursuing ship is momentarily at rest, but the pursued ship
is moving backward, thanks to that old relativistic standby,failure of simultaneity.  So the pursued ship is
getting closer.]

The x'-distance between the curves is actually slightly smaller than γk.  You can see this by a geometrical
construction on fig.6.  Remember that P is point on the low-hand (brown) curve , and the t'-axis (green
line) passes through P and is  tangent to that curve.  Draw a vertical line (a line t = t1) through P; let this
line cross the up-hand curve at O.  Draw a (blue) line parallel to  the t'-axis through this point O (a line of
the form x'=constant).  Fact: the  (magenta) x'-axis crosses the two slanted lines, x' = 0 and x' = constant,
at  x' coordinates 0 (P) and γk (R), respectively.  Since the up-hand curve is tangent to x'=constant at R,
the x'-axis will cross the up-hand curve at x' < γk (according to the curvature of worldline, the curve is
under  the  x' = constant  line through Q).  Notice that the difference PR - PQ will be decreasing with
time! 

[In t',x' rocket 1 comoving frame, as the rocket 1 (brown) worldline  is tangent  to t' at P, dx'/dt' = 0, but
at Q, (crossing point of rocket 2 worldline and x'-axis), as the rocket 2 (dark blue) worldline is not tangent
to any t'= constant line,  dx'/dt'  ≠ 0, in fact  dx'/dt' < 0 as we can read on fig.1. In his comoving frame,
rocket  1 (at  rest  by  definition  of  comoving  frame)  sees  rocket  2 getting  closer  at  the  same  time
accordingly  to  SR   simultaneity  rules  (  the  x'-axis  is  the  line  of  simultaneity)  ]  [End  of  bracket
convention.]

Let's have a look on what happens from the point of view of rocket 2 observer, in rocket 2  local inertial
frame (t”, x”) at Q (t”-axis is tangent to rocket 2 worldline at Q and is represented on the diagram by a
blue line , x”-axis symmetrical of t”-axis around light ray worldline is represented on the diagram by a
black line issued at Q, it crosses rocket 1 worldline at P' ≠ P). So the rocket 2 observer at Q sees rocket 1
observer at P'.  Let's notice the obvious breakdown of simultaneity. 

When rocket 1 is at  P it measures spacelike distance to rocket 2 as  PQ. But when rocket 2 is in  Q, it
measures spacelike distance to rocket one as QP' which is different.  We can see on the diagram that in
t”,x” frame (we draw a blue line at  P'  parallel to  t”-axis line at  Q ) that the velocity of rocket 1  is
positive,  rocket  2  observer  at  rest  in  t”,x” frame  sees  rocket  1  behind  her   approaching,  which  is
consistent with the previous statement: they are going closer apart!).   

We may conclude in the same way than in chapter 3 as what we described in this chapter  is  the  anti-
symmetrical phenomenon that the one described in chapter 3. So, same general conclusions would apply.
This first picture interprets "two ships with the equal constant accelerations" to mean "constant for the co-
moving observers, and equal in the lab frame".  

Note that the lab frame says that the accelerations are not constant, and the co-moving observers say the
accelerations are not equal! (More precisely,  any particular co-moving observer says this.  The phrase
"the  co-moving  observers"  does  not refer  to  a  single  frame of  reference,  unlike  the  phrase  "the  lab
frame".)  The lab frame says  the ships maintain a constant distance from each other;  the co-moving
observers don't agree.

To conclude this chapter we must say that we did not analyze the transient regions, described by the
worldlines of the two rockets,  on Fig.5, around t =1 corresponding to thrust reversal process.

There is  no special  difficulty,  situation evolving smoothly from accelerating to  decelerating situation
passing through a neutral local point where simultaneity should be the same in the two rockets frames.
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This point can be computed by equating equations of x'_axis for 0 < t < 1 for rocket 1 and x” axis for 1 <
t < 2 for rocket 2.
Let's call P (on rocket 1 worldline) and Q (on rocket 2 worldline) these points.

Equation of x'-axis at t0 , 0 <t0 <1, is:

x' = sqrt(1+t0²)*t/t0 

Equation of x” axis at t1  ,1<t1<2, is:

x” = sqrt(1+ (t1-2)²)*t/ (2 - t1 ) + b

The problem is symmetrical around  t =1, so t0 = 1 - t2,  and t1= 1 +t2 

as we can check.  

sqrt(1+(1-t2)²)/(1-t2) = sqrt(1+ (t2-1)²)/ (1 - t2 )

So for symmetry reason (around point O middle of vertical line between the 2 worldlines at t = 1) the 
convenient straight line should satisfy:

sqrt(1+t0²)/t0   = sqrt(2) +0.25, (1+t0²)/t0 ² =  [ (sqrt(2) +0.25)²] ≈ 2,7696068
t0 =  1/sqrt({[ (sqrt(2) +0.25)²] -1}) ≈ 0.7517295≈ 1- 0.248.

So P coordinates (t0,x) are (0.752, 1.28)

x'-axis at P crosses worldline of rocket 2 at t1 = 1 +0.248 = 1.248. 
Rocket 2 worldline equation for this part of the curve is:

x = 2*sqrt(2) +0.5 – sqrt( 1 +(t-2)²)

t1 = 1.248 yields  x = 2.08

so point Q has coordinates (  1.248, 2.08)

Let's check that point is on x'(P) defined by x' = sqrt(1+t0²)*t/t0 

So for t =  1.248,  x' (P) ≈ 2.08.

P and Q are turning point in synchronization. At these point rocket 1 and 2 agree on the simultaneity of 
the events , so on the length of the distance between space ships. In fact each one at rest in his co-moving 
frame sees the other also at rest in this co-moving frame.

6- Round trip worldline

On the following diagram (fig.7) we see a combination of previous worldlines previously analyzed.

Here we will describe worldlines of two rockets located initially at two points of the lab frame separated
by a distance  d (which makes sense in the lab frame) simultaneously  taking off (simultaneous makes
sense in lab frame) and experiencing constant (in their respective co-moving frame) and identical (in lab
frame)  acceleration. 
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After some same elapsed time (as measured by their own clock in respective co-moving frame18) rockets
stopped their engine going to inertial flight. After the same elapsed proper time in inertial flight they fire
again their engine but in reversing the thrust. So the distance to lab will increase slower and slower up to
a return point where it will start to decrease. 

The second part of the diagram will show that we perform the same operations that in the first part in
order to close the worldline (round trip). 

Fig.7: Roundtrip worldline.

18 This time is also equal in the lab frame (t =0.5 in our example) as the corresponding worldlines have the same measure of 
affine parameter τ, as we will demonstrate below.
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Let's compute the “Minkowski length ” of  the different legs of the worldline of rocket 1.
Segment AB (length of a segment of hyperbola):

From x = sqrt(1+t²) → dx = t.dt/sqrt(1+t²) 
ds² = dt² – dx² = dt² [1 – t²/(1+t²)] = dt²( 1/1+t²) → ds = sqrt[1/(1+t²)].dt

posing t = sinh α) → α = argsinh (t) , α0 = argsinh(t0), α1 = argsinh(t1) and

ds = sqrt[1/(1+sinh²(α)] = sqrt[ 1/cosh²(α)] = 1/cosh(α).
As dt = cosh(α) .dα, ds = [1/cosh(α)]cosh(α) .dα,  =  dα.

So s = ∫ 
α0 

 α1  dα = α1 - α0 = argsinh(t1)- argsinh(t0) 

In our example we get:

argsinh(0.5)- argsinh(0) = argsinh(0.5)= 0.481212 as argsinh(0)= 0.

On the straight part (AB) of worldline the computation of  s is straightforward (linear)

ds² = dt² – v².dt²

with v = t/sqrt (1+t²) = 0.5/ sqrt[1+(0.5)²] = 0.5/sqrt(1.25)
ds² = dt²( 1- 0.25/1.25) = (1/1.25)dt² → ds = sqrt(1/1.25).dt →s = sqrt(1/1.25) ∫0.5

1.5 dt= sqrt (1/1.25)

let's now compute leg CD.
We see on the diagram that it is the symmetric of AB (whether we consider D at rest in the lab frame as
the starting point and moving backward). The spacetime interval (s)  does not depend on sign of t.

and all the other legs are of the same type.
So the final result comes to:
τ rocket = 4( 0.481212) + 2 (0.8944272) = 3.7137024 

In the laboratory frame , the elapsed time is 4.

This exhibits the twin paradox, the rockets observers are younger than theirs colleagues remained in the
lab frame.
For rocket 2 we get the same result as the two function differ only by a constant which is eliminated when
computing derivatives.
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7- First variant : keep distance constant in co-moving frame.19

7-1  Accelerating worldlines.

Second picture: pick the same left-hand curve as before, but pick the right-hand curve to be 20: 

    x =sqrt(K2 + t2),    K > 1. (7.1)

Fig. 8: Keeping distant constant in co-moving frame. worldlines of rocket 1 identical as before (lower hyperbola) 
and rocket 2 ( x = sqrt [K²+t²], upper hyperbola, for K =2) are represented in red thick line. The common asymptote
of the two hyperbola is the (red) straight line x =t. At P, we represented the outgoing light ray (in navy blue) the t'-
axis (in green) and the x'-axis (magenta) symmetrical of t'-axis around light ray.
At  Q,  we  represented  the outgoing light  ray (in  navy blue)  the  t”-axis  (in  green)  and the  x”-axis  (magenta)
symmetrical of t'-axis around light ray.

19 See FAQ originated by M. Weiss.
20 MTW discusses this case in more detail under the name "Fermi-Walker transport". 
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We can see that x'-axis and x”-axis are identical and that t'-axis at P and t”-axis at Q are parallel.
This exhibits than there is no relative motion in both co-moving frame, (the two rockets observers agree on that):
they consider the  distance unchanged. But in the lab frame as we can see that  QQ' < PP'< OO'. The distance
suffers Lorentz contraction in the lab frame.

7-1-1  Here it turns out that the distance between the ships  is constant according to co-moving
observers.  

As we said  before,  an  hyperbola  defined  in  Cartesian  coordinates  by  x  = sqrt(K²  +x²)  has  a  nice
geometrical  property.  The  x'-axis (line of simultaneity issued at any point P of the curve  is passing
through the origin (t = 0, x = 0). Let's demonstrate it now: Deriving (7.1) yields.

dx/dt = t /sqrt (K²+t²) = a

The slope of the tangent at the curve is a. 
We know that the x'-axis, at any P on worldline defined by (7.1), is symmetrical of the tangent (t'-axis)
around light ray worldline defined by x = t + b for outgoing light ( x = -t +c,  for ingoing light).
So the slope of the x'-axis at P is 1/a = sqrt(K² +t²)/t.

The x'-axis general equation is then:

 x = t/a +b, 

where b is the offset when t = 0.

As x'-axis value at P  is  sqrt(K² +t²), we have:

x = sqrt(K² +t²) = (sqrt(K² +t²)/t)*t  +b = sqrt(K² +t²) +b  → b=0.

We have demonstrated that the x'-axis (line of simultaneity issued at any point P of the curve  is passing
through the origin (t = 0, x = 0).

So this implies that the x'-axis at P on worldline of rocket 1 (pursuing rocket) defined by x = sqrt(1 + t²)
will cross the worldline of rocket 2 (pursued rocket) at Q. But as at Q , the x''-axis  will go through (t =0 ,
x =0), x'-axis and x”-axis are identical.
As at P the t'-axis is symmetrical of x' around the local light ray worldline, as well as t” in Q , t'-axis and
t”-axis are parallel. 
This implies that each observer, at rest by definition in his co-moving frame, sees the other also at rest. So
the distance between them should not vary.
 
7-1-2 Yet the pursuer never catches his prey!  (Reminds me of Achilles and the Tortoise or Keat's 
Grecian Urn.) 

The equation (7.1) defines a family of embedded hyperbolas with the same asymptotes (x = ± t  when t
→∞) but different offset at t = 0.
These hyperbolas do not have any crossing point, as it is easy to see on the equation  (7.1). The same
value of t yields always a different value of  x (for finite values).

7-1-3 The lab frame people measure a Lorentz-contracted distance.

As these  embedded  hyperbolas  within  the  same  asymptotes  are  not  parallels  in  the  (t,  x)  Cartesian
diagram, it is obvious that the distance D as measured on vertical line at t = constant are depending on t
(not equal).
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7-1-4 The co-moving observers again say that the ships maintain constant acceleration21. 

As the computation is quite long, it is made in an appendix.
 
7-1-5 Both lab frame people and co-moving observers find that the pursuer accelerates at a greater 
rate than the pursued. 

It is easy to see on fig. 8 than the inner hyperbola (worldline of rocket 2) has a curvature smaller than the
rocket 1worldline  hyperbola. The correct computation in appendix 6 shows that constant acceleration (in
co-moving fame) is 1 for rocket 1 and k-3/2 for rocket.

7-1-6 Explanation of this strange phenomenology  

It looks quite strange that when the two rockets are accelerating in the same way in their respective co-
moving frame their distance is growing and when the pursuing rocket is accelerating faster the distance
may remain the same. We will discuss this point at the end but notice first that the simultaneity criterion
of the SR using light signal for performing such operation would be involved. 

Just let's recall how this criterion works22.

A light signal is emitted in co-moving frame 1 at point A received and reflected without delay at point B
in co-moving fame 2 and received again at C in co-moving frame 1. One says that the middle of worldline
AC is synchronous of B. 

But as the rockets are accelerating at constant rate, we are facing to a non linear problem.
Roughly speaking, when the signal is emitted at E by rocket 1 the rocket 2 is getting apart further faster
an faster  and when it reaches rocket 2 at Q and is reflected rocket 1 is going toward this light signal also
faster and faster and at a different rate than for first part of the trip. So the round trip path is the sum of
two parts which are different.

The middle  of worldline ER in affine parameter (not only hyperbolic geometry, but also curved geometry
as, unlike in the case of pure Lorentz transformation between two inertial frame, the ratio between affine
parameter measurement and length of the curve on the diagram is not constant) in not the middle of the
curve representing the worldline on the Minkowski diagram which represents the worldline in euclidean
geometry. 

Let see fig. 9 below for illustration.

21 See appendix 6
22 Other criterion can be used for length computation ( foliation of spacetime at constant time). See [ Gautreau-Hoffman]
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Fig 9: Simultaneity criterion in SR: A light ray emitted at E on rocket 1 worldline, is reflected at Q on
rocket 2 worldline and received again at R on rocket 1 worldline. Point event Q is simultaneous with
point event P, middle of E .
We see on the diagram that the picture does not reflect that P is the middle of ER.

In fact this solution will be introduced more formally when speaking about the Rindler space-time.
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7-2 Round trip worldlines

Now let's wonder about what happen whether we perform a sequence of acceleration and deceleration in
order to complete round trip worldlines.

In this solution the worldlines are members, defined by one parameter (k²), of a family  of hyperbolas
having same asymptotes. This is different from the basic example where hyperbolas were just translated.

Notice also that as the rockets  enjoy different acceleration, at a same time coordinate  t in the lab frame,
their co-moving frame, the elapsed time will be different. The previous scenario (the rockets reverse the
thrust after an equal elapsed time since taking off) would be reconsidered. 
We will  have  to  decide  when each rocket  reverse the  thrust,  what  would be  the reverse  thrust,  and
depending on the choice we will have several solutions.

We will not explore all the possibilities but we would like to see whether there exist a solution where
distance in co-moving frame remain constant during the whole trip.

The  geometry  of  the  solution  (embedded  hyperbolas  with  same  asymptotes)  suggest  that  for  the
deceleration path the part of the rockets in the story should be reversed. 

At first Rocket 1 chasing rocket 2 should have a greater proper acceleration for keeping distance constant
but when decelerating this should be reversed.
Whether  we like  to  keep the  distance  constant  (in  co-moving  frame)  this  should be also true  at  the
junction of the segment of the worldlines, the common x' axis, line of simultaneity which appears to be
the boundary of accelerating and decelerating worldlines.  All  these remarks lead us to consider the
following solution.

Starting from fig.8, let's call the origin A and extend the common x'-axis to the right passing through A (0,
0), P (t1, x1) and Q(t2, x2). It crosses a vertical line at A' [t0 = (t1+t2), x0 =  (x1+x2)].

Point  A' will play the part of  A but for the decelerating worldlines (the asymptotes of the hyperbolas
corresponding to decelerating worldlines will be lines issued from A' at 45°). 

One can see the symmetry, around the point M middle of PQ, in the proposed solution. 

We will demonstrate that this solution will fulfill our purpose and later we will try to find an intuitive
explanation for such strange phenomenology.

Acceleration of rockets are different in both co-moving frame and lab frame but their distance remain the
same!
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Fig.10:  Round trip worldlines:  One can see,  on the first  half  of the worldline,  that  distance between
rockets measured in the lab frame is decreasing, then as second half is symmetrical this distance in the lab
frame would increase up to recover its initial distance.

The distance decreases in the first half as acceleration of pursuing rocket is higher than these of the
pursed rocket so when accelerating distance between them will decrease and conversely.

As the acceleration of the two rockets (in their respective co-moving frame) are different, on the above
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diagram where they reverse the thrust at the same time (in the laboratory frame), their elapsed proper time
will be different as we will demonstrate below.

But  it  is  obvious  that  as  velocity  of  rocket  1  is  higher  (as  starting  from rest  at  the  same  time,  its
acceleration is always  higher) its proper time will be smaller when reversing thrust.

An other possible figure is to make the rockets reversing thrust after  same elapsed proper time. This
would give an other interesting figure, we will describe later on in this chapter.

Proper time worldlines according fig.10 diagram:

According to worldline computation already done in the previous chapter:
The “Minkowski length ” of  the different legs of the worldline of rocket 1.
Segment OP (length of a segment of hyperbola):

From x = sqrt(1+t²) → dx = t.dt/sqrt(1+t²) 
ds² = dt² – dx² = dt² [1 – t²/(1+t²)] = dt²( 1/1+t²) → ds = sqrt[1/(1+t²)].dt

posing t = sinh( α) → α = argsinh (t) , α0 = argsinh(t0), α1 = argsinh(t1) and

ds = sqrt[1/(1+sinh²(α)] = sqrt[ 1/cosh²(α)] = 1/cosh(α).
As dt = cosh(α) .dα, ds = [1/cosh(α)]cosh(α) .dα,  =  dα.

So s = ∫ 
α0 

 α1  dα = α1 - α0 = argsinh(t1)- argsinh(t0) 

In our example we get:

argsinh(0.5)- argsinh(0) = argsinh(0.5)= 0.481212 as argsinh(0)= 0.

For rocket 2 the same method for O'Q worldline gives:

From x = sqrt(K²+t²) → dx = t.dt/sqrt(K²+t²) 

ds² = dt² – dx² = dt² [1 – t²/(K²+t²)] = dt²( K²/K²+t²) → ds = sqrt[1/(1+t²/K²)].dt

posing t/K = sinh(α) → α = argsinh (t/K) , α0 = argsinh(t0/K), α2 = argsinh(t2/K) and

ds = sqrt[1/(1+sinh²(α)].dt= sqrt[ 1/cosh²(α)]dt = dt/cosh(α).

As dt = K.cosh(α) .dα, ds = [1/cosh(α)]K.cosh(α) .dα,  = K. dα.

So s = K ∫ 
α0 

 α2  dα = α2 - α0 = K[argsinh(t2/K)- argsinh(t0/K)] 

In our example (t2 = 1, t0 = 0, K =2) this yields:

s = 2[argsinh(1/2)- argsinh(0)]= 2.argsinh(1/2) = 2.(0.481212) = 0.962424

We can see that this proper time is longer that the proper time of rocket 1 observer, as acceleration (so
resulting velocity) is smaller by a K3/2 factor as demonstrated in appendix 6 and it flies longer before
reversing thrust.
According to the symmetry of the solution, we have QS = OP and PR= O'Q. So we have all we need for
completing the computation.
The worldlines of rocket 1 and rocket 2 up to t = 1.5 (half of the total worldlines) is the sum of a  OP
worldline and a O'Q worldline, i.e in our example:
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OR = OP +PR = OP +O'Q = argsinh(1/2) + 2.argsinh(1/2) = 3.argsinh(1/2) = 1.443636
O'S = O'Q+QS = O'Q +OP = OR = 1.443636.

For the full round trip it comes for traveler's proper time: τ = 2. 0.481212 = 2.887272.
In the lab frame the corresponding elapsed proper time is t =3.

We see the twin paradox effect (travelers are younger than static observers): τ rocket2 = τ rocket1 <τ lab

The scheduling of the flight is as follows:
Let's call A1 initial acceleration of rocket 1 and A2 initial acceleration of rocket 2. 

Rocket 1 fires engine at constant acceleration +A1  for a proper time equal to  0.481212,  then reverse
thrust   getting -A2 during 1.924848 then reversing again thrust getting again +A1 during 0.481212.
At the end of the journey which lasted 2.887272 (  0.481212 + 1.924848 +0.481212), rocket 1 is again at
rest in the lab frame returned at its starting point.

Rocket 2 fires engine at constant acceleration +A2  for a proper time equal to  0.962424  then reverse
thrust   getting -A1 during 0.962424 then reversing again thrust getting again +A2 during 0.962424.
At the end of the journey which lasted 2.887272 ( 0.962424 +0.962424+ 0.962424) rocket 1 is at rest in
the lab frame returned at its starting point.

Finally let's make a more formal computation of proper time in such solution.

Posing t = sinh (α) and defining coordinates of points A,P,Q to be: A (t0 = 0, x 0= 0), P (t1, x1), Q(t2, x2).

For OP worldline, x= sqrt(1+t²), proper time is:

s = ∫ 
α0 

 α1  dα = α1 - α0 = [argsinh(t1)- argsinh(t0)] 

Q is the intersection of x'-axis at P and worldline of rocket 2.

Equation of x'-axis at P  is: [sqrt(1+t1²)/t1,]t
So t2  is defined by :

[sqrt(1+t1²)/t1]t =sqrt(t²+k²) →[1+t1²)/t1²]t² =t²+k² → t²{ [1+t1²)/t1²]-1} =k² →t²/t1² = k² → t2= k t1 

Plugging this in the proper time computation of proper time on worldline O'Q gives:

s = k ∫ 
α0 

 α2  dα = α2 - α0 = k[argsinh(t2/k)- argsinh(t0)] = k[argsinh(t2/k)] =  k[argsinh(t1)]

This confirm the result we got on the numerical application, up to the simultaneity common line, the
proper time on worldline x = sqrt(k²+t²) is k time the proper time of worldline x = sqrt(1+t²). 
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7-3 This spacetime is the Rindler spacetime.

In Rindler spacetime analysis , the equations of the trajectory of an uniform ( of magnitude α)  accelerated
observer are defined in parametric  coordinates as follows23:

t(τ) = (1/α)sinh(ατ)
x(τ) = (1/α)cosh(ατ) (7-3-1)

Where τ is proper time. So the definition here is different, in two ways, than the previous one which gave
the space coordinate as  a function of the time coordinate. First,  τ  is not a coordinate but is an affine
parameter of the worldline,  second we use a parametric definition.
We will show that even some results are the same, this is not strictly equivalent.
This definition is more physical than the previous one.

It is easy to check that this corresponds to a constant acceleration. Acceleration two-vector is given by:

aµ = D²xμ/dτ² = d²xμ/dτ² (flat spacetime)

The computation of the magnitude yields: 

(aµaµ)1/2 = α

The trajectory of our accelerated observer satisfies:

x²(τ) = t²(τ) +α-2

We choose new coordinates η, ξ (- ∞ < η, ξ < ∞ ) such as:

t = (1/a) eaξ.sinh(aη) x = (1/a)eaξcosh(aη) (x < |t|)

Fig 11: Rindler spacetime in Minkowski coordinates: Coordinates  η, ξ (-  ∞ < η, ξ < ∞ ) are represented on this
diagram: Hyperbolas are lines of constant ξ ,( for an observer with α = a, η is the proper time on these hyperbolas,
ξ is the parameter of the infinite family), straight lines issued from center of symmetry are lines of constant η.

In these coordinates the constant acceleration path,  defined in (7-3-1), is described by equations: 

23 For all the details, see,for instance, spacetime and geometry, p 403-406  S. Carroll, Addison Wisley 2003. 
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η(τ) = ατ/a
ξ(τ)= [ln(α/a)]/a

So the proper time is proportional to η and the spatial coordinate ξ is constant .
For an observer with α = a,  η = τ , ξ = 0

In these coordinates the metric is:

ds² = e2aξ ( -dη² +dξ²)
In these coordinates we can see that:

x² – t² = (1/a²) e2aξ.cosh²(aη) -(1/a²)e2aξsinh²(aη)= (1/a²) e2aξ

with (1/a²) e2aξ  = K² , (assuming ξ = constant as well as a = constant),  we see that this equation is the
same than eq.(7.1). From  t = (1/a)eaξ.sinh(aη), x = (1/a)eaξcosh(aη),we see that x/t are lines of constant η.

From η = cste we get the spatial distance between two worldlines by integrating:

  ds = ea ξ dξ,  from ξ =b1 to ξ =b2  for a = a1 and a = a2.

We see that as the metric depends on ξ., the space coordinate is not “flat” but curved. This explain why
we were in trouble with worldlines of identical constant acceleration a  

But we are not obliged to stick to constant identical  acceleration for all  worldlines.  The acceleration
parameter is a degree of freedom. Let's select a such as a.ξ = cste =k, and let's draw the associated family
of hyperbolas in η, ξ coordinates. 
In  this  case  the  space  coordinate  is  no  longer  curved  and  the  computation  of  the  distance  is
straightforward.
With  these  adapted  coordinates  the  spatial  length  (at  η = cste)  between two of  these  hyperbolas  of
acceleration a = a1 and a = a2.

s = l = ∫a1
a2 ek dξ  = ek  [ξ(a2) - ξ(a1)]

Note  that  this  distance  does  not  depend of  η. So when  η is  varying from -∞ to  +∞,  generating  the
hyperbola,  we would find always the same distance between the two hyperbolas. We have demonstrated
that  with  such  foliation  of  spacetime  we  keep  the  distance  constant  between  to  of  the  considered
accelerated  observers.  In  fact  such  foliation  would  exactly  compensate  the  curvature  of  the  spatial
coordinate.

 
As seen in this  chapter,  the spacetime defined in chapter 6 is definitely  the Rindler (or at least one
region)  of the Rindler  spacetime where a is  the acceleration  parameter and  ξ is  a space parameter
defining one hyperbola among the infinite family of hyperbolas.
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7-4 Relation with Milne universe

The Milne cosmology is a pure SR theory24, however it is also the solution of the Friedmann equation
using Robertson Walker (RW) metric when density of matter ρ vanishes. In this case, Friedmann equation
becomes:

H(t)² =  -κ/a(t)²
where κ is the space curvature and a the scale factor. We see that the space curvature should be negative
and as H = (da/dt)/a , the equation can be simplified to : 

 da/dt = (-κ)1/2

which solution is:
 a(t) =  (-κ)1/2.t +b 

with a(t) =0 at t =0 we get:
  a(t) =  (-κ)1/2.t 

the expansion law is linear.  Plugging it into RW metric 

ds² = -dt² +a(t)²[dr²/(1+r²) +r²(dθ² +sin²θdφ²)

shows that the metric of the the Milne universe can be written as follows:

ds² = -dt² +t²[dr²/(1+r²) +r²(dθ² +sin²θdφ²)

The 2D version is:

ds² = -dt² +t².dr²/(1+r²)

Let's perform the same coordinate transformation than the one we did for the Rindler spacetime.

t = cosh(α),  r = sinh (α) ,  we get: dt = sinh(α)dα,  dr = cosh(α)dα .

ds²= -dt² +t².dr²/(1+r² )= -sinh²(α).dα ² + [cosh²(α).cosh²(α)/(1 + sinh²(α)].dα ².  

As cosh²(α) -sinh²(α) = 1 →  1 + sinh²(α) = cosh²(α), 

 ds² = -dt² +t².dr²/(1+r² )=  dα ² [cosh²(α) -sinh²(α)]= dα ².

We know that dτ² = -ds² so posing α = i.τ we get dα  = i.dτ, dα² = -dτ², the previous equation becomes:

ds² = -dτ²

We see that the Milne spacetime is related to the Rindler spacetime by metric signature inversion.

Complements on Milne universe.25

Roughly speaking the Milne universe is a pure SR cosmological solution where the whole universe of
galaxies gets created at a single point in flat spacetime. They all shoot out at different speeds.
The galaxies are treated as non gravitational  test particles (no gravity). Unlike FLRW GR cosmologies,
this universe has an outside preexisting to the explosion. 

24 E.A. Milne, 1933, Z. Astrophys.6,1
25 See http://world.std.com/~mmcirvin/milne.html , for a nice description of the Milne cosmology.

http://world.std.com/~mmcirvin/milne.html
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To make a comparison with standard cosmologies  it would be interesting to define a cosmic time in the
Milne universe i.e  to consider hypersurfaces of constant proper time since creation.
The equation in 2D is obvious, we just have to use the Lorentz transformation (with c =1).
We sketch below the relevant Minkowski diagram.

The blue line is a light ray. The magenta line is the worldline of a galaxy of celerity  v1, brown line of a
galaxy of celerity v2. . We sketched in red a segment of constant proper time line (hyperbola) 

As τ = t/sqrt(1-v²)  and v = x/t
we get: 

τ² = t²/(1-x²/t²) = 1/t²-x².

So equation of constant τ would be the well known hyperbolas defined by:

t²-x² = 1/τ ² = cste

But let's notice that, unlike the Rindler spacetime, hyperbolas are not lines of constant space coordinate
but instead lines of constant time.

We drew the previous  Rindler  spacetime  where hyperbolas  in  the  right  and left  quarter  are  lines  of
constant  space coordinate.  In the upper (  and down not represented)  quarter,  hyperbolas  are  lines of
constant proper time and magenta and brown straight lines are line of constant celerity which would play
the part of spatial coordinate in this foliation of spacetime.
This confirms the relation between Rindler spacetime and Milne spacetime in this type of coordinates,
time and space should be exchanged. No surprise as both are just different foliations of the Minkowski
spacetime.

This means that we are no longer facing to a timelike acceleration but to a “spacelike” acceleration.

t

x
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7-5 Is this distance physical?

Here we are not in the standard SR situation as some worldlines are not inertial everywhere  and the lab
frame is playing a central part, as rocket's worldlines originate from the lab frame. So the stretching (or
non stretching, in the variant with different accelerations) of the distance should be considered physical
even though it is not so easy to measure it by some rigid body.26

An  interesting  topic  is  that  between  two  “truly  inertial”  frame  (inertial  for  eternity)  the  Lorentz
contraction is symmetrical (so considered as unphysical)27  as we are not able to decide which one is
originated  from  the  other,  if  any  (the  inertial  frames  may  have  always  physically  existed  or  more
realistically they may have been created at a place in spacetime which was not causally connected at
Universe time of creation to what was at that time our current place: no causal connection with us: The
information is beyond an event horizon) . 

In both cases it is undecidable.

But in the experiences we described, we know which one has been common and as the symmetry is
broken, it is sensible to say that the contraction is physical.

The  interesting  feature  is  that  even  in  case  we  can  not  decide  the  SR  gives  the  right  value  “of
contraction”. This is the sign of a consistency of physical laws as otherwise depending on the way this
situation is obtained we would have different  phenomenologies. 

Note that the consistency the common origin not causally connected to us,can be explicated, as even we
do not know  whether A comes from B or B comes from A, in both case according the invariance of
physical law we get the same conclusion. 

7-6 How physical are accelerating observers in Special Relativity?

We may have some doubt in SR as acceleration imply a physical process for doing it;
Such process should be energy and mass less as otherwise GR should apply.

26 The rigid body in non inertial frames would involve an infinite celerity for perturbation propagation (when you apply an 
acceleration at some place the induced  perturbation should be instantaneously propagated in the rigid body. We know that 
such perturbation would propagate at the speed of sound in the body. This why we would rather  speak of the space 
distance between  “point-rocket” which is more appropriate in the SR context.

27 In fact it is undecidable as we are missing some information (this information mat be beyond  an horizon of events
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8- Second variant: A flavor of GR

Last picture, edging just a bit towards GR: impose the following (indefinite) metric on the (t, x) plane: 
   

dτ2 = e2xdt2 – dx2 (8-1)

This spacetime possesses a "uniform gravitation field".  
More precisely, time-like geodesics with the initial condition dx/dτ  = 0 at some point P satisfy:

 d2x/dτ2 = -1 at P 28.

The geodesic equation is: 

d2x/dτ2 +Γ x
μν(dxμ/dτ)(dxν/dτ) =0

With gxx= 1/ gxx= -1 , gtt = e2x, the only Γ x
μν non vanishing Christoffel symbols is:

Γx
 tt= ½ gxx(∂t gtx+ ∂t gtx- ∂x gtt)= ½ gxx(- ∂x gtt)= ½ (2.e2x) = e2x → d²x/dτ² = -e2x (dt/dτ )² (8-2)

From (8-1) dt²/dτ² = [1 + dx²/dτ²]e-2x. 

Plug it into (8-2):

d²x/dτ² =- e2x [1 + dx²/dτ²]e-2x  = -1 + dx²/dτ² →  d²x/dτ² = -1 (with dx/dτ =0).

So if a lab-frame observer (that is, (t, x) coordinate system) lets go of an object, she'll see it drop with
acceleration 1 (provided she uses a clock that keeps local time dτ, e.g. an atomic clock). 

Spaceships in this universe keep stationary by setting their engines on constant thrust.

You might be tempted to think that this universe is equivalent to ordinary flat spacetime via a coordinate
transform.  Not so!  Take a couple of spaceships, stationary in the lab frame.  They keep their engines
blasting away with constant force.  (I'll refrain from the obvious Star Trek  jokes).  

If someone steps off a ship and starts falling, he becomes (for a moment) one of our co-moving observer. 
(He's in free-fall, and so inertial by definition!)  He falls at the universal constant acceleration of  1, or in
his humble opinion, the ship is accelerating at this rate.
So if our brave new world really  is flat spacetime in disguise, then the "intrinsic acceleration" of each
ship, the acceleration as measured  by a co-moving observer, is always 1.  So our two ships must trace out
parallel hyperbolaas in the first picture.  
But then the distance between them would increase with time, as measured by the co-moving observers. 
But it doesn't!  

So our new universe is not flat.

You can clinch the matter by computing the curvature you should get R = - 2 (at least I did) 29. 
With t = x0, x = x1, using Mathematica 4 with ds² = -e2zdt²+ dx² we find: 
For the Riemann tensor two non vanishing values for components30: R[0,1,1,0] = 1, R[1,0,1,0] = e2x,
for the Ricci tensor two non vanishing values for components: R[0,0] =e2x, R[1,1] = -1,

28 See appendix 7
29 I checked by using Mathematica 4 that R = -2 with ds² = -e2x dt² +dx² , .
30 Riemann, Ricci and Einstein tensors are symmetrical tensors. So there not only one component with the given values.
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and the Einstein Tensor vanishes: G = 0.
Curvature Ricci scalar is R = -2. 
It is quite a strange spacetime as Ricci tensor does not vanish but Einstein tensor does!

The 4-d variant:     
dτ2 = e2zdt2 - dx2 - dy2 - dz2

is also amusing to play with.

With t = x0, x = x1,y = x2, z = x3, using Mathematica 4 with ds² = -e2zdt²+ dx² +dy +dz² we find:
 
For the Riemann tensor two non vanishing values for components: R[0,3,3,0] = 1, R[3,0,3,0] = e2z,
 for the Ricci tensor two non vanishing values for components: R[0,0] =e2z, R[3,3] = -1,
 and for the Einstein Tensor two non vanishing values for components :   G[1,1] =1, G[2,2] =1. 
Curvature Ricci scalar is R = -2. 

As we can see on the Einstein (diagonal) tensor:
 diag( Gμν )= (0,1,1,0) 

the Einstein field equations where κ is a dimensional constant :
 

Gμν = κ.Tμν 

imply a diagonal stress-energy tensor of the form:

 diag(Tμν ) = (0, p,p,0) 

with zero density but non-zero (and spatially non-isotropic) pressure (the z component is null) , i.e, not
physically realistic31:  Even though it is just complying with the Weak energy condition, ρ ≥ 0,  ρ+p ≥ 0
as  the pressure  is confined in a plane perpendicular to the z axis, this looks not physical (we do not know
physical processes giving such phenomenology).

My guess is that the Einstein empty-space equations forbid a uniform gravitational field in the above
sense.  I haven't checked this, though.
Historically, Einstein had some trouble with these issues for a time. 
See the discussion of Born's theory of relativistically rigid bodies in Pais' biography, "Subtle is the Lord";
you may also want to look at TheRigid Rotating Disk in Relativity.

31 We may think about 2D topological defects such as walls, but these should have a time component in stress energy tensor. 
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9-Alternative analysis using Wick rotation

9-1 What is a Wick rotation?

In physics, Wick rotation, named after Gian-Carlo Wick, is a method of finding a solution to a problem
in Minkowski space from a solution to a related problem in Euclidean space, by analytic continuation.
It is motivated by the observation that the Minkowski metric

ds2 = − (dt2) + dx2 + dy2 + dz2 

and the four-dimensional Euclidean metric

ds2 = dt2 + dx2 + dy2 + dz2 

are equivalent if one permits the coordinate t to take on complex values. 

The Minkowski metric becomes Euclidean when  t is restricted to the  imaginary axis, and vice versa.
Taking a problem expressed in Minkowski space with coordinates  x,  y,  z,  t,  and substituting  w =  it,
sometimes yields a problem in real Euclidean coordinates x, y, z, w which is easier to solve. 

This solution may then, under reverse substitution, yield a solution to the original problem.

Wick rotation connects quantum mechanics to statistical mechanics in a surprising way. The Schrödinger
equation and the heat equation are related by Wick rotation, for example. 

However, there is a slight difference. Statistical mechanics  n-point functions satisfy positivity whereas
Wick-rotated quantum field theories satisfy reflection positivity.

It is called a  rotation because when we represent complex numbers as a plane, the multiplication of a
complex number by i is equivalent to rotating the vector representing that number by an angle of π/2

When Stephen Hawking wrote about "imaginary time" in his famous book A Brief History of Time, he
was referring to Wick rotation.

Wick rotation also relates a QFT at a finite inverse temperature β to a statistical mechanical model over
the "tube" R3×S1 with the imaginary time coordinate τ being periodic with period β.

Note, however, that the Wick rotation cannot be viewed as a rotation on a complex vector space that is
equipped with the conventional norm and metric induced by the inner product, as in this case the rotation
would cancel out and have no effect at all.

9-2 Application to the Bell paradox.

9-2-1 Variant 1: x = sqrt (t²+k²) worldlines.

9-2-1-1Accelerating worldlines

Let's start not by the basis version but by the alternative where worldlines are defined by a family of
hyperbolas x = sqrt(k²+t²) which corresponds to the Rindler spacetime as this example is more striking.
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For performing the Wick rotation we have to replace the real coordinate t by an imaginary one i.t.

x= sqrt(k² +t²) → x = sqrt(k² -t²) i.e   x² +t² =k² which is the equation of a circle of radius k.

Let's sketch32 the accelerated part of the worldline illustrated in fig.8  after a Wick rotation.

Fig. 12: Variant 1 accelerated worldlines represented in euclidean geometry after a Wick rotation: 
Arcs of embedded hyperbolas becomes arcs of concentric circles ( center in C, radius 1 and k).
Points O,O', P,Q are the sames as in fig 8 (just “Wick rotated”). 
This is obvious as they have the same coordinates, x,t. 
We also represented t'-axis and x'-axis of the co-moving frame of rocket 1 at P.
The diagram shows that the rocket 1 co-moving frame at P (x' =0) is also the co-moving frame of rocket
2 at Q (x' = PQ). 

It is remarkable that the distance PQ between the two worldlines in co-moving frame (t',x') (the shortest
distance in euclidean geometry33) is constant. As CPQ  is a common radius of the two, it is orthogonal to
wordline  O'P  at  P  as  well  to  worldline  OQ at  Q.  This  implies  that  the  tangent  to  the  worldlines
respectively at P and Q, which are local t'-axis are orthogonal to this radius which is the local  x'-axis. 

This representation exhibits clearly this “mysterious”  properties we derived previously.
But to make them applicable to our problem, we have to demonstrate that these properties are preserved
by a Wick transformation. 

Let's recall some some important geometrical properties preserved by a Wick  rotation.

– A straight line remains a straight line.

– The spatial distance conserved: this is a consequence of the definition of the two metrics and  of the
distance in SR (a t = constant): ds² = dt +dx² = -dt² + dx² when t = constant (dt =0).

– The common radius line of simultaneity issued from the center  of symmetry of the circles,   will
remain a common line of simultaneity issued from the center of symmetry of the hyperbolas ( the
tangents  at  intersection  points  which  are parallel  on the concentric  circles  remain  parallel  by the
transformation at the corresponding intersection points on the hyperbolas).34

32 Fig 12,13,14 are not “exact” diagram. There have been just sketched to illustrate the result of the Wick rotation.
33 But the longest in Minkowski geometry according to the Wick rotation.
34 This is quite easy to demonstrate this property by considering in a t,x cartesian diagram two circles of equation x²+t² = k² 

and x² +t² = k'² as well as the corresponding two hyperbolas of equation x²-t =k² and x²-t² =k'². A radius x =vt (v < 1) 
crosses the circles and hyperbolas on some points, we can compute, and computing the derivatives a crossing points shows 
that the property is satisfied.
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-Fig 12 bis: Wick rotation, two hyperbolas x² = 1+t² and x² =4+t² with  point O as center of symmetry
and common (brown) asymptote of equation x = t transforms in two concentric circles of centerO (center
of  symmetry)  of  radius  1  and  2  and  conversely  for  the  inverse  Wick  transform.  According  to  the
symmetry , only one quarter of the figure is represented.

The magenta line is a line of simultaneity in both Minkowski and Wick rotated euclidean representation
crosses hyperbolas at P and Q and Circles at A and B.

We have already demonstrated that the (green) tangents at P and Q were parallel. 
The tangent at A and B are obviously parallel as they are orthogonal to a common radius of the circles.
The distance between worldlines is AB in the Wicked rotated euclidean representation, one can see that is
constant (in euclidean geometry) all along the simultaneity lines  (radius of circles). 

This is not obvious on PQ distance in the (hyperbolic) Minkowski metric as the length of such segment
looks not constant on this (euclidean) diagram (PQ ≠ P'Q' for instance) but the fact that the tangents at P
and Q are parallel ensures that this is a “perspective” effect due to the curvature of the spatial coordinate
as we will demonstrate further.

9-2-1-2Accelerating and decelerating worldlines.

Now whether we add a decelerating path on the worldline, we see that this diagram that according to
the new position of the center of the concentric circle, the exterior circle will become the inner circle
and conversely. Let's sketch the worldlines of fig.10 after a Wick rotation.

x

x

t

P

Q

A

B

O

x



Essay on the Bell's space ship Paradox 02/28/08 p36/51

Fig.13: Variant 1,where we added the decelerated parts of worldlines represented in euclidean geometry 
after a Wick rotation: The worldlines are symmetrical around C”PQC, the common radius of accelerating 
and decelerating circles, boundary between acceleration and deceleration.

Arcs of embedded hyperbolas becomes arcs of concentric circles ( center in C, C”, radius 1 and k).
Points O,O', P,Q, P',Q',P”,C” are the sames as in fig 10 (just “Wick rotated”). 
This is obvious as they have the same coordinates, x,t.

Again, one can see that the distance between worldlines defined in euclidean geometry remain constant 
all along the worldlines and that the line of simultaneity is common along the common radius of the two 
circles (tangents at worllines are parallel at P' and Q', as well at P and Q as well at P”and Q” . 
This makes obvious this mysterious property on the Minkowski diagram.
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9-2-2 Parallel accelerating worldlines in Minkowki diagram

Now let's go back to the basic problem, it is can be sketched as follows.

Fig. 14: Accelerated worldlines represented in euclidean geometry after a Wick rotation: 
Arcs of translated hyperbolas becomes arcs of translated circles (centers in C, C' radius= 1 ).
We represented also x'-axis,t'-axis of rocket 1 co-moving frame at P as well as x”-axis,t”-axis for co-
moving frame at Q of rocket 2.
There is no common radius so the distance QP' as seen from the worldline measured on the radius of the 
upper circle would be different than the distance PQ measured on the radius of the other circle.

In addition one can see that for each observer the distance between rockets is varying from the starting 
common value OO' (when both rockets are at rest) to respectively QP and QP' up to Q;

Again this representation makes obvious a property which was not obvious on the Minkowski diagram.

9-2-3 Parallel accelerating followed by inertial worldlines in Minkowki diagram

Now let's go back to the inertial variant of the basic problem, it is can be sketched as follows.

Fig. 15: Accelerated worldlines followed by inertial worldlines represented in euclidean geometry after a 
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Wick rotation: Arcs of translated hyperbolas becomes arcs of translated circles (centers in C, C' radius= 
1 ), straight lines remain straight lines. The x'-axis and t'-axis of the co-moving frame is represented

In addition to comments to fig.14 for the non inertial part of the worldline, we see that after PQ there is a 
transition area up to full inertial flight starting at P'Q. After P'Q , unlike before as stated on fig.14,  the 
distance in co-moving frame (t',x')  will become the same for both rockets and will be well defined. 
But we see that this distance d is shorter35 (on the diagram) than the initial distance D in lab frame (t,x ): 

 d= P'Q = P”Q” < D=  O'O = PQ.

It is easy to compute the factor of “contraction”. The celerity at P is:  v =dx/dt = tg (Â)
Angles Â and PQP'  are equal, So d = D.cos (Â),  with 1/cos² x=  1+tg²x,  we get:

1+v² = 1/cos²Â , cosÂ = sqrt(1/1+v²) so d = D/sqrt(1+v²) (1)

The Wick rotation from euclidean to Minkowski spacetime is defined by transforming t into i.t,

v = dx/dt becomes in Minkowki metric i.v and v ² → -v².

Plugging this in eq.(1) gives:   d = D/sqrt(1-v²) 

This is the result we expected (Lorentz “contraction”) showing that in co-moving frame the “proper” 
distance is longer than the one in the lab frame. As we started from lab frame with co-moving length 
equal to D, the contraction is physical. Any string binding the two rockets would be stretched!

Again this representation makes obvious a property which was not obvious on the Minkowski diagram.

10- Conclusion

Along this  essay we explored  some variants  of  the  Bell's  spaceship  paradox.  Let's  summarize  some
important facts we encountered within this work.

Parallel worldlines

When  the  worldlines  of  the  ship  were  parallel  in  the  Minkowski  spacetime  (same  constant  proper
acceleration, distance between ships remaining the same in lab frame), we noticed that, due to a lack of
synchronization, according to the definition of distance in SR,  it was not possible to define a “common”
distance between ships at a time as the observers did not agree on a common value. 
But both agree on the fact that this distance is not constant in their co-moving frame and is increasing.

Let's notice that "two ships with the equal constant accelerations" to mean "constant for the co-moving
observers,  and equal  in  the  lab  frame".  Note  that  the  lab  frame  says  that  the  accelerations  are  not
constant, and the co-moving observers say the accelerations are not equal! (More precisely, any particular
co-moving observer says this.  The phrase "the co-moving observers" does not refer to a single frame of
reference, unlike the phrase "the lab frame".)  The lab frame says  the ships maintain a constant distance
from each other; the co-moving observers don't agree.

Whether after some acceleration equal steps the spaceships reverse the thrust in order to decelerate, we
will find the same phenomenology but this time the distance is decreasing. Whether the deceleration step
is equal to the acceleration step then the distance would recover its initial value. Whether we close the
loop  (roundtrip)  then  the  spaceship  will  recover  all  their  initial  parameters  but  obviously  the  space
travelers  will enjoy the twin paradox effect (elapsed proper time of both travelers equal but shorter than
proper time of lab observers). 

35 But according to the Wick rotation the shorter would become the longer!
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We notice an antisymmetry when we switch the direction of acceleration. We will define acceleration and
deceleration as follows.
When acceleration vector is pointed outwards  distance increases, when pointed inwards (toward the lab
frame) distance decreases.
In others words, starting from frames which are the same, acceleration makes relative absolute value of
velocity to increase and deceleration make relative velocity to decrease:
Acceleration → |v|↑ , deceleration → |v| ↓

 
In a second step, observers will stop their engine after some equal elapsed proper time continuing in
inertial flight. 
So the worldline are not totally inertial but one part of it is inertial. Sticking to the inertial part, we are
able to use the SR machinery for realistic computation as this time both space ships' observers will agree
upon their distance.  Computing it (by different methods) in their common co-moving frame we  notice
that the distance is greater that the initial one. This looks physical! 

Conversely, the length  of an object lying in the lab frame as measured in the co-moving space-ship frame
obeys to Lorentz transforms.

Is the length stretching physical ?

Anyway we are facing a quite interesting puzzle. We know that in pure (“eternal”) SR inertial frame
Lorentz contraction is symmetrical! So this is interpreted usually as a “perspective effect” as it is difficult
to imagine A longer than B and B longer than A. But is it a sensible question?

How comes that such “eternal” inertial frame could exist?

Let's notice that “eternal” would mean that in our observable universe we would observe such inertial
frame everywhere and at any time in spacetime.  So they may have been issued from common frame,  but
we would never know and we would have no mean to know (for instance this event is beyond an event
horizon) how and where this could have happen and what would be the original length of the object
before going to this inertial frame!

A consequence of this is some undecidable principle!
.
But the physics should be consistent and even though we do know how this originates we physical laws
relative to some “identical”  configurations of inertial  frames (same relative velocity v) should be the
same, no matter how we got them ! 
And happily that's the case, as the same Lorentz transforms applies. A distance  d in one inertial frame
measured D in an other inertial suffers a Lorentz contraction by a factor 1/γ. ( D = d/γ).

We do not know how two different “Lorentz” inertial frames  F and G with a relative velocity  v  come
from but we are able to make them become one common frame by the reverse process we are talking
about in this essay. Let's select the following orientation choice36 compliant with our choice in this essay. 

And positive acceleration is considered pointing to the right.

36 This choice is arbitrary but you can check that an other choice of orientation would give the same result.

F

Gvd

D
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Let's consider two inertial frames above. By decelerating G we may make it to become F. The length d in
G frame is  measured  D = d/γ in  F.  When we decelerate  we have seen that  the physical  distance is
contracted. Our computations have shown that when arriving in  F the segment  d  would have a length
contracted by a 1/γ factor i.e the length is now D = d/γ, exactly what was measured by F.

Now let's consider the other possibility:  F accelerate  in order to come to  G.  We know that  physical
distances would increase in this process. So  D would be stretched by a  γ factor and its length would
become D.γ =d.

By these operations we have demonstrated that no matter whether F comes from G or G come from F, as
starting with two identical  objects  in one inertial  frame whether  one of these objects  goes away and
finally flies in an inertial frame, the physical length of both objects would obey to Lorentz transform. 

This shows that, as  it is well known, we have no mean for checking this “physically” without breaking he
symmetry. 
But in the Bell paradox  the symmetry is broken, as spaceships both originate from lab frame, we have all
information about the evolution of the system, it is decidable, so without the all the argument we have
developed it does makes sense to say that the distance has changed.

In fact the real paradox was about the compatibility of the computation we made in the Bell's spaceship
paradox which exhibited a physical stretch and the standard SR Lorentz transform where such stretching
were considered as non physical and where we show that in fact this results of an undecidable principle
but it should be likely physical even we have no mean to be sure except in breaking the “symmetry”37 .

As we stated before, the consistency of the laws of physics ensures that the phenomenology of a well
defined system does not depend on its history (Markovian processes).

It is quite interesting to notice that the measurement (without breaking symmetry) of an inertial moving
body using light signals which seems something quite conventional  predicts , via a Lorentz transform,
the same result that what we get when breaking the symmetry and performing physical measurement.

The only info we do not get by the first process is how we got this system. But according to the relativity
of physical laws (SR) for the inertial system it is not necessary to know it!

The fact that (no symmetry breaking) measurements using light signals accounts has the same physical
consistency (taking into account Lorentz transforms) that physical (symmetry breaking) measurements
exhibits the fundamental part of the light in the SR theory, which is perfectly reflected (contained) by the
structure of the Minkowski spacetime. 
No wonder, as SR has been built on these hypothesis (invariance of physical laws in inertial frames)!

Time dilatation

We have seen that time is also dilated. It is easy to understand that a clock experiencing an acceleration
may being slowed down, but when after acceleration we are going to inertial frame why should a physical
clock being slowed down? This looks unphysical.

The answer is in he Minkowski spacetime structure which is  built  on inertial  frames having relative
velocity and experiencing relative time and space elasticity. This structure is less trivial than it appears!
This should be explained in more details.

GR versus SR

37 This looks similar to QM where before an experiment the state of a system is not decidable!
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GR tells us that this is matter and energy which create time and space. In other word without matter and
energy do not exist.
So is it sensible to speak about time and space in SR where there is no matter?

Is the  Minkowski spacetime physical?

According GR it would not be physical as it looks to be empty ? So should it be considered only as a limit
of GR when matter energy  fields are almost vanishing?

Would antimatter save the Minkowski physical spacetime?

An other possibility is that antimatter has a negative gravitational mass. In case there would be matter, so
space  and  time  as  well  as  inertia  and  the  gravitational  structure  of  the  space  time  should  be  the
Minkowski space time.

This should be studied in more details.....

The loop is closed...

Embedded hyperbolas worldlines: Rindler spacetime

Now  more  interesting  is  the  variant  where  the  worldlines  are  embedded  hyperbola  having  same
asymptotes [x = sqrt(t²+k²]

Here the acceleration is constant in each co-moving frame but different. Chasing rocket has a greater
acceleration than chased rocket but never catch it. Embedded hyperbolas x = sqrt(t²+k²) never intersect.
Here, surprisingly as acceleration are different, distance between rockets remain constant (we decide this
as there is no relative celerity of each rocket in the (common) local frame of the other.

How is this possible?. This is possible because of the curvature of the spacetime. 

The foliation of the 2D Minkowski space according to the coordinates (η, ξ) of the Rindler spacetime (see
chapter 7.3) is such as time sections (at spacelike coordinate  ξ = cste) of this spacetime (a 1D timelike
“hypersurface” i.e a line) are orthogonal to the space basis vector (∂ξ)µ.  
This is confirmed by the diagonal form of the metric in these coordinates. 

This timelike coordinate (at  ξ = cste) is proportional  to the proper time of an uniformly accelerated
observer with acceleration α = a.e-aξ.   = a.e-k according to the equations and the condition we imposed in
chapter  7.3  for  getting  the  distance  invariance  between  hyperbolas  of  the  one  parameter  family  of
hyperbolas.
This proportionality is given by  η (τ) = α.τ/a = e-aξ.  τ=  e-k τ

Therefore these coordinates  provide a set of spatially “equidistant” hyperbolas”, the affine parameter of
which is proportional to proper time of uniformly accelerated observers, orthogonal to the (straight) lines
of constant time, the affine parameter of which is the distance between hyperbolas, i.e the equivalent for
accelerated observers of the Minkowski Cartesian coordinates for static observers.
We be wonder why we have to adjust the acceleration of the observers according to the rule we stated
before.
A Wick rotation would make it easy to understand.
Let's remind that a set of such hyperbolas corresponds to a set of concentric circles under a Wick rotation
(chapter9, fig 12bis).
With this in mind the solution is obvious. Any set of two concentric circles exhibit a constant distance
between them. But the curvature of each circle (the inverse of the radius) is different. Let's notice that this
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set of concentric circles generates the whole 2D plane and is nothing else that the r = constant lines in
polar  coordinates  in  euclidean  geometry.  Now going  back  to  the  cinematic,  in  euclidean  geometry,
whether we consider the curvature as the worldline of an observer, he would be uniformly accelerated and
acceleration corresponds o the curvature38. 
So what is obvious in this property is conserved by a Wick rotation (see fig.12bis of chapter 9).

We  see  that  the  Cartesian  diagram in  euclidean  geometry  is  transformed  into  Cartesian  diagram in
Minkowski  space  by  a  Wick  rotation  and  polar  coordinates  are  transformed  into  hyperbolic  polar
coordinates in the Minkwoski spacetime.

The Rindler (η, ξ) coordinates are nothing else than polar coordinates in Minkowski spacetime!

We demonstrated these property in a 2D spacetime but it could be easily extended to a 4D Minkowski
spacetime (t, x, y, z) where acceleration would be in the z direction.  As this does not involve additional
phenomenology we will not consider this case here which is beyond our scope (see appendix 8).

Again, deceleration would imply some anti symmetrical effect and it is possible as in the previous case to
perform a round trip worldline by completing a  convenient sequence of acceleration and deceleration
steps. Again the twin paradox will be enjoyed by travelers.

Can we build something equivalent to proper time for the spatial proper distance?
Obviously we can integrate the value of the “proper” length all along the worldline (appendix 9).

Minkowski space time in null coordinates

This  representation  may  enlighten  some  fundamental  properties  of  this  spacetime  by  exhibiting  the
structural  part  of  light  in  SR  (and  GR).  This  reminding  the  importance  of  the  Newmann  Penrose
Formalism in GR (Kerr Newmann BH).

To be written.

What happens to an elastic cable? 

Why should the length increase under constant acceleration?

Isn't this equivalent to applying a constant force pulling both ends of the elastic cable?
In case, the length should increase provoking a backward elasticity reaction force in order to balance the
acceleration  and  whether  the  acceleration  is  within  elasticity  limit  (let  say  1g),  equilibrium may  be
reached and the length should remain constant. 
As far as we know the elastic stretch does depend on the force applied but does not on application time.

And whether we go back to inertial flight, there would be no longer a constraint on the cable so whether
we are in the elasticity limit shouldn't  the cable recover its initial length?

What would happen whether the cable is tight to the rocket but encounter the same acceleration applied
on each of its atoms? Would it be stretched? Likely yes because of the curvature of spatial dimension
while accelerating and at the end will it be frozen at its new size or will it recover its initial size.

And what   happens whether at the end of acceleration, in inertial flight, in order to erase its “material
memory”, we melt the cable and rebuilt from it a brand new one in these new frame (crystals of the steel
would grow in this new context)  of the same diameter (which was not subject to Lorentz contraction in

38 We did not demonstrate this well know and basic property , you may exercise it is straightforward. 
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this experience). Which length would it get. Would be its length equal to the current distance between
rockets or would it be too short  (original length)?

Wouldn't consistency with SR  imply that its length will fit the current distance between ship's?

Conclusion

This paradox is more confusing that it appears and raise a fundamental problem about the Minkowski
spacetime. There is no preferred frame in this space time but relative time and space elasticity looks to be
a physical property. Even when acceleration, so stress ceases the space time parameters looks to stick to
the value they acquired by the acceleration as this acceleration was just a transient media to make a body
come to a frame where physical properties of space and time are different, like what happens when we
move in a gravitational field (but in a gravitational field we have a physical motivation) . Even though we
have seen that this does not imply any contradiction there is a conceptual difficulty. Within a classical
interpretation,  it difficult to understand how such property is physically possible. 
Paradoxically SR is more strange and difficult to understand than GR!
We should suppose that classical interpretation is not possible and that the structure of the Minkowski
space whether it exists physically (we may doubt of this, it may be some asymptotic limit of mass system
when we are very far from the masses)  should be the right one even if this is out of the scope of classical
understanding.

11- Appendixes

11-1 Appendix 1: length in Minkowski metric vs euclidean metric

As the Minkowski diagram is represented in euclidean geometry, the length of the curve on the diagram is
∫(dx²+dt²) ½, in the Minkowski geometry this length is ∫(dx²-dt²) ½,which is different!

11-2 Appendix 2: Equation of curves in maxima

Maxima 5.9.2 http://maxima.sourceforge.net
Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima.

11-3 Appendix 3:d²x/dt² =1 at t =0
According to:

 v = dx/dt at t = t0

and
x = sqrt(1+t²) → v = dx/dt = t/sqrt(1+t²) 

d²x/dt² = d/dt(dx/dt) = d/dt(t/sqrt(1+t²) = 1/sqrt(1+t²) – t.{[t/[sqrt(1+t²).(1+t²)]}= (1+t² -t²)(1+t²)-3/2 

d²x/dt² = (1+t²)-3/2   = 1 for t = 0

 11-4 Appendix 4 : d²x'/dt'² = 1 in basic solution: x =sqrt(1+t²)

The Minkowski local co-moving frame at P is defined by its constant velocity v relative to the laboratory
frame (so  the  γ factor  is  also constant).The value  of  this  velocity  depending  on the  point  P on  the
worldline  should  be  plugged,  as  well  as  γ,  in the  equations  after  having computed  first  and second
derivatives. 
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According to:
 t' =γ(t-vx) + C_0         v = dx/dt at t = t0

    x' =γ(x-vt) + D_0   γ =1/sqrt(1-v2) 
and

x = sqrt(1+t²) → v = dx/dt = t/sqrt(1+t²) → dx= t/sqrt(1+t²).dt 
so γ =1/sqrt[1- (t²/1+t²)]= 1/sqrt (1/1+t²)=sqrt(1+t²)

at some point P at coordinates t = t0 , 

dt' = γ[1- v.t/sqrt(1+t²)]dt =γ[(sqrt(1+t²)- v.t)/sqrt(1+t²)]dt
dx' =γ[ t/sqrt(1+t²) – v]dt = γ[ (t - sqrt(1+t²))/sqrt(1+t²)]dt

So velocity in the co-moving frame is:

dx'/dt'  = [ t/sqrt(1+t²) – v]/[1- v.t/sqrt(1+t²)] = [t -v.sqrt(1+t²)]/[sqrt(1+t²) – v.t]

Acceleration in co-moving frame d²x'/dt'² = d/dt'(dx'/dt) = d/dt(dx'/dt')(dt/dt') = 

{d/dt([t -v.sqrt(1+t²)]/[sqrt(1+t²) – v.t])}{sqrt(1+t²)/[sqrt(1+t²) -v.t]}/γ =

{[1 -v.t/sqrt(1+t²)]/[sqrt(1+t²)-v.t] – ([t-v.sqrt(1+t²)]/[sqrt(1+t²)-v.t]²)([t-v.sqrt(1+t²)]/[sqrt(1+t²)])}
{sqrt(1+t²)/[sqrt(1+t²) -v.t]}/γ =

{1/sqrt(1+t²)}{[sqrt(1+t²) – v.t]/[sqrt(1+t²)-v.t]- [t-v.sqrt(1+t²)][t-v.sqrt(1+t²)]/sqrt(1+t²) -v.t)²}
{sqrt(1+t²)/[sqrt(1+t²) -v.t]}/γ 

Many terms cancel and this can be simplified in:

{([sqrt(1+t²) -v.t]²- [t-v.sqrt(1+t²)]²)/[sqrt(1+t²) -v.t]3}/γ ={[sqrt(1+t²)-v.t +t-v.sqrt(1+t²)][sqrt(1+t²]-vt 
-t +v.sqrt(1+t²)]}/[sqrt(1+t²) -v.t]3}/γ =
{[(1-v)[sqrt(1+t²)+t](1+v)[sqrt(1+t²)-t]}{[sqrt(1+t²) -v.t]3}/γ ={[(1-v²)(1+t²-t²))]/[sqrt(1+t²) -v.t]3}/γ =

[(1-v²)3/2]/[sqrt(1+t²) -v.t]3}

as γ = 1/ sqrt(1-v²) = sqrt(1+t²) and v = t/sqrt(1+t²), plugging these into previous equation gives:

[(1-v²)3/2][sqrt(1+t²) -v.t]3}= {[sqrt[(1/1+t²)]]/[sqrt(1+t²)-t²/sqrt(1+t²)]}3= 

 {[sqrt[(1/1+t²)]]/[(1+t²-t²)/sqrt(1+t²)}3= {sqrt[(1/1+t²)sqrt(1+t²)}3=1.

So we see that the acceleration in co-moving frame is constant and is equal to 1, as asserted.

The same computation applies for rocket 2 complying to equation:

x = sqrt(1+t²) + K  

as  v = dx/dt = t/sqrt(1+t²) identical to first case, all differential elements have the same value than in the 
first case (the constant K is eliminated).

11-5 Appendix 5 : velocity of rocket 2 in rocket 1 co-moving frame.

In  t', x' coordinates at P, dx'/dt' =0 as t'- axis is tangent to rocket 1 worldline.
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To compute dx'/dt' at Q in t', x' coordinates, we have to compute the intersection of x'-axis with rocket 2 
worldline for getting the coordinates of point Q and to compute the equation of the tangent of worldline 
of rocket 2 at Q. 
By comparing the slope of the tangent straight line at P and Q we may check that dx'/dt' > 0 at Q, which is
obvious on fig.2.
According to our example on fig.2, at P  of coordinates t = 0.5, x = sqrt(1.25) in lab frame, we get:

x = sqrt(1.25)*2t.

This line crosses rocket 2 worldline at Q, of coordinates t, x in the lab frame defined by:

x =sqrt(1.25)*2t = sqrt (t²+1) +0.5 → (sqrt(1.25)*2t -0.5)² = t²+1 → 5t² +0.25 – 2*sqrt(1.25)t= t²+1→

4t² -2*sqrt(1.25) -0.75 =0, selecting positive root:

t = [sqrt(1.25) + sqrt(1.25+3)]/4 ≈ 0.7948967≈ 0.7949
x = sqrt(1.25)*2*0.7948967.

The tangent at rocket 2 worldline  at Q (t = 0.7949) is given by:
dx/dt (Q)= t/sqrt(1+t²) = 0.7949/sqrt[1+(0.7949)²] ≈ 0.62226

While the tangent at rocket 1 worldline at P (t = 0.5), which is the t'-axis of co-moving frame was:

dx/dt (P)= t/sqrt(1+t²) = 0.5/sqrt[(0.5)² +1] ≈ 0.4472

we see that the slope of the tangent at Q is higher than at P, so the velocity of rocket 2 at Q is positive in 
rocket 1 co -moving frame.

11-6 Appendix 6 : d²x'/dt'² = 1 in variant solution: x = sqrt(k²+t²)

As this demonstration is very close from these of appendix 4 we follow the same method
According to:

 t' =γ(t-vx) + C_0         v = dx/dt at t = t0

    x' =γ(x-vt) + D_0   γ =1/sqrt(1-v2) 
and

x = sqrt(k²+t²) → v = dx/dt = t/sqrt(k²+t²) → dx= t/sqrt(k²+t²)dt
so γ =1/sqrt[1- (t²/k²+t²)]= 1/sqrt (k²/k²+t²)=sqrt(1+t²/k²)

at some point P at coordinates t = t0 , 

dt' = γ[1- v.t/sqrt(k²+t²)]dt = γ{[sqrt(k²+t²)- v.t]/sqrt(k²+t²)}dt 
dx' =γ[ t/sqrt(1+k²) – v]dt = γ{[t -v.sqrt(k²+t²)]/sqrt(1+k²) }dt

So velocity in the co-moving frame is:

dx'/dt'  = [ t/sqrt(k²+t²) – v]/[1- v.t/sqrt(k²+t²)] = [t -v.sqrt(k²+t²)]/[sqrt(k²+t²) – v.t]

Acceleration in co-moving frame d²x'/dt'² = d/dt'(dx'/dt) = d/dt(dx'/dt')(dt/dt') = 

{d/dt([t -v.sqrt(k²+t²)]/[sqrt(k²+t²) – v.t])}{sqrt(k²+t²)/[sqrt(k²+t²) -v.t]}/γ =

{[1 -v.t/sqrt(k²+t²)]/[sqrt(k²+t²)-v.t] – ([t-v.sqrt(k²+t²)]/[sqrt(k²+t²)-v.t]²)([t-v.sqrt(k²+t²)]/[sqrt(k²+t²)])}
{sqrt(k²+t²)/[sqrt(k²+t²) -v.t]}/γ =



Essay on the Bell's space ship Paradox 02/28/08 p46/51

{1/sqrt(k²+t²)}{[sqrt(k²+t²) – v.t]/[sqrt(k²+t²)-v.t]- [t-v.sqrt(k²+t²)][t-v.sqrt(k²+t²)]/sqrt(k²+t²) -v.t)²}
{sqrt(k²+t²)/[sqrt(k²+t²) -v.t]}/γ 

Many terms cancel and this can be simplified in:

{([sqrt(k²+t²) -v.t]²- [t-v.sqrt(k²+t²)]²)/[sqrt(k²+t²) -v.t]3}/γ ={[sqrt(k²+t²)-v.t +t-v.sqrt(k²+t²)][sqrt(k²+t²]-
vt -t +v.sqrt(k²+t²)]}/[sqrt(k²+t²) -v.t]3}/γ =

[{[(1-v)[sqrt(k²+t²)+t](1+v)[sqrt(k²+t²)-t]}/{[sqrt(k²+t²) -v.t]3}]/γ ={[(1-v²)(1+t²-t²))]/[sqrt(k²+t²) 
-v.t]3}/γ = [(1-v²)3/2]/[sqrt(k²+t²) -v.t]3}

as γ = 1/ sqrt(1-v²) = sqrt(k²+t²)/k and v = t/sqrt(k²+t²), plugging these into previous equation gives:

[(1-v²)3/2]/[sqrt(k²+t²) -v.t]3}= {[sqrt[(k²/k²+t²)]]/[sqrt(k²+t²)-t²/sqrt(k²+t²)]}3= 
 {[sqrt[(k²/k²+t²)]]/[(k²+t²-t²)/sqrt(k²+t²)}3= {sqrt[(k²/k²+t²)sqrt(k²+t²)/k²}3= k -3/2.

So we see that the acceleration of the pursued rocket in co-moving frame is constant as asserted and is 
equal to  k -3/2,< 1 as k >1 , which is inferior to the acceleration of the pursuing rocket.
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11-7 Appendix 7: Direct computation of proper distance in inertial flight

11-7-1- Distance between rockets in rocket's co-moving frame

We will use the radar method. From P (t0,x0)  belonging to R1 (rocket 1 inertial worldline) a light signal is
emitted, it reaches R2 (rocket 2 inertial worldline ) at Q (t1,x1) where it is reflected and reaches R1 at 
R(t2,x2). R1 and R2 worldlines  are separated by a distance d in the lab frame and have velocity v in lab 
frame.

Equation of R1 (brown line) is: x = v.t +a
as P belongs to R1 we have x0 = v.t0+a → a = x0 -vt0,→ x = vt + x0 -vt0

Equation of R2 (R1 translated, red line) is obviously: x = vt + x0  +d - vt0

Equation of outgoing light ray (with c =1) worldline OL (blue) at P is: x = t +b
as P belongs to R1 we have:  x0 = t0+b → b = x0 -t0,→ x = t + x0 - t0

OL crosses R2 at Q (t1,x1) defined by: t + x0 - t0 =vt + x0  +d – vt0   →  
t(1-v) = t0(1 -v) +d →t1 = t0 +d /(1-v)

 x1  = d /(1-v) + x0 

Equation of reflected light ray RL (blue) at Q is: x = -t +c 
as Q belongs to RL we have: 

d /(1-v) + x0  = - [t0 +d /(1-v)] +c → c = 2d/(1-v) + x0  +t0 → x = -t + 2d/(1-v) + x0  +t0 

RL crosses R1 at R(t2,x2) defined by:

vt + x0 - vt0 = -t + 2d/(1-v) + x0  +t0 →  t( 1+v)  = t0  (1+v) + 2d/(1-v)→ t = t0 +2d/(1-v²)

The proper time on segment PR of R1 is:  
τ² = t² – x² = t²-v²t² = t²(1-v²) = [t0 +2d/1-v²) -t0]²[1 -v²] →  τ = 2d/sqrt(1-v²), 

as in the radar method,  this is twice the distance D (return path) multiplied by speed of light, we have: 

D= d/sqrt(1-v²)
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O
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11-7-2- Initial distance in lab frame measured in co-moving frame.

The worldlines of rockets 1 and two are sketched (with their non linear part) on the diagram.
A and B are the taking off places of rockets 1 and 2 in lab frame. We would like to measure in R1 inertial 
part of the worldline the distance AB. Let's call it d as usual. P has coordinates (t0, d)
We also drew co-moving R1 frame t'-axis (which is R1 worldline) and x'-axis which is symmetrical of t'-
axis around a light ray (eq. x = t ) issued at P.  So whether slope of t'-axis is v, slope of x'-axis would be 
1/v.
We know that x'-axis is the line of simultaneity.
PQ is the distance d would be measured in R1 frame.

The generic equation of  x'-axis in lab frame is:

x' = t/v + a
P is on the line so :

d = t0/v +a  → x' = t/v +d - t0/v 

This line crosses x-axis for x' = 0, i.e :

  t/v +d - t0/v = 0 → t =  t0  -v.d 

The proper distance D (PQ on the diagram)  in R1 co-moving frame in SR  is therefore:

s² = -t² +x² =  -(QR)² + d² = -(v.d)² +d² = d² (1-v²)  → s = d. (1-v²)1/2   .

Which is what we expected: distance d looks contracted when measured in co-moving frame.

Q

P

t

x R1R2

B

A

R

LA

LB

t'

x'

R



Essay on the Bell's space ship Paradox 02/28/08 p49/51

11-8 Appendix 8: Length integration on worldlines

We have seen that the length is different for accelerating rocket 1 and accelerating rocket 2.
Let's first compute the length for rocket 1.
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11-9 Appendix 9: 4D Rindler spacetime.

Cylindrical coordinates ?
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